A265809 Denominators of lower primes-only best approximates (POBAs) to Pi; see Comments.
2, 5, 7, 11, 13, 17, 31, 61, 71, 241, 311, 1427, 1667, 3023, 4591, 5749, 9817, 14563, 15241, 19309, 43717, 51853, 56599, 170701, 177481, 183809, 184487, 193979, 194431, 265381, 13800151, 14397343, 33239959, 35429437, 38216107, 58916503, 261541507, 414604999, 549157573
Offset: 1
Examples
The lower POBAs to Pi start with 5/2, 13/5, 19/7, 31/11, 37/13, 53/17, 97/31, 191/61, 223/71, 757/241, 977/311. For example, if p and q are primes and q > 241, and p/q < Pi, then 757/241 is closer to Pi than p/q is.
Programs
-
Mathematica
x = Pi; z = 1000; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265812/A265813 *) Numerator[tL] (* A265808 *) Denominator[tL] (* A265809 *) Numerator[tU] (* A265810 *) Denominator[tU] (* A265811 *) Numerator[y] (* A265812 *) Denominator[y] (* A265813 *)
Extensions
More terms from Bert Dobbelaere, Jul 20 2022
Comments