This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265810 #9 Jul 20 2022 17:09:18 %S A265810 7,17,23,41,167,211,431,563,569,619,1109,5413,10427,16063,20323,28843, %T A265810 47969,56489,71399,75659,99089,107609,118259,145949,203459,211891, %U A265810 626443,1668503,5628757,16259473,20011031,38144863,40436969,72536393,93379723,114431749,136109153,266173577 %N A265810 Numerators of upper primes-only best approximates (POBAs) to Pi; see Comments. %C A265810 Suppose that x > 0. A fraction p/q of primes is an upper primes-only best approximate, and we write "p/q is in U(x)", if p'/q < x < p/q < u/v for all primes u and v such that v < q, where p' is greatest prime < p in case p >= 3. %C A265810 Let q(1) = 2 and let p(1) be the least prime >= x. The sequence U(x) follows inductively: for n >= 1, let q(n) is the least prime q such that x < p/q < p(n)/q(n) for some prime p. Let q(n+1) = q and let p(n+1) be the least prime p such that x < p/q < p(n)/q(n). %C A265810 For a guide to POBAs, lower POBAs, and upper POBAs, see A265759. %e A265810 The upper POBAs to Pi start with 7/2, 17/5, 23/7, 41/13, 167/53, 211/67, 431/137. For example, if p and q are primes and q > 67, and p/q > Pi, then 211/67 is closer to Pi than p/q is. %t A265810 x = Pi; z = 1000; p[k_] := p[k] = Prime[k]; %t A265810 t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; %t A265810 d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) %t A265810 t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; %t A265810 d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) %t A265810 v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; %t A265810 b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; %t A265810 y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265812/A265813 *) %t A265810 Numerator[tL] (* A265808 *) %t A265810 Denominator[tL] (* A265809 *) %t A265810 Numerator[tU] (* A265810 *) %t A265810 Denominator[tU] (* A265811 *) %t A265810 Numerator[y] (* A265812 *) %t A265810 Denominator[y] (* A265813 *) %Y A265810 Cf. A000040, A265759, A265808, A265809, A265811, A265812, A265813. %K A265810 nonn,frac %O A265810 1,1 %A A265810 _Clark Kimberling_, Jan 02 2016 %E A265810 More terms from _Bert Dobbelaere_, Jul 20 2022