A265811 Denominators of upper primes-only best approximates (POBAs) to Pi; see Comments.
2, 5, 7, 13, 53, 67, 137, 179, 181, 197, 353, 1723, 3319, 5113, 6469, 9181, 15269, 17981, 22727, 24083, 31541, 34253, 37643, 46457, 64763, 67447, 199403, 531101, 1791689, 5175551, 6369709, 12141887, 12871487, 23089051, 29723689, 36424757, 43324889, 84725681, 105426077, 110667493
Offset: 1
Examples
The upper POBAs to Pi start with 7/2, 17/5, 23/7, 41/13, 167/53, 211/67, 431/137. For example, if p and q are primes and q > 67, and p/q > Pi, then 211/67 is closer to Pi than p/q is.
Programs
-
Mathematica
x = Pi; z = 1000; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265812/A265813 *) Numerator[tL] (* A265808 *) Denominator[tL] (* A265809 *) Numerator[tU] (* A265810 *) Denominator[tU] (* A265811 *) Numerator[y] (* A265812 *) Denominator[y] (* A265813 *)
Extensions
More terms from Bert Dobbelaere, Jul 20 2022
Comments