cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265812 Numerators of primes-only best approximates (POBAs) to Pi; see Comments.

Original entry on oeis.org

5, 7, 17, 23, 41, 167, 211, 223, 619, 757, 977, 1109, 4483, 5237, 5413, 9497, 14423, 16063, 18061, 30841, 45751, 47881, 60661, 137341, 162901, 177811, 211891, 626443, 833719, 38144863, 40436969, 45230587, 93379723, 114431749, 120059441, 185091653, 347672183, 1725229397, 1736068099
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2016

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences. Many terms of A265806 are also terms of A265801 (denominators of POBAs to tau).

Examples

			The POBAs to Pi start with 5/2, 7/2, 17/5, 23/7, 41/13, 167/53, 211/67, 223/71, 619/197. For example, if p and q are primes and q < 53, then 167/53 is closer to Pi than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = Pi; z = 1000; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265812/A265813 *)
    Numerator[tL]   (* A265808 *)
    Denominator[tL] (* A265809 *)
    Numerator[tU]   (* A265810 *)
    Denominator[tU] (* A265811 *)
    Numerator[y]    (* A265812 *)
    Denominator[y]  (* A265813 *)

Extensions

More terms from Bert Dobbelaere, Jul 20 2022