This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265813 #20 May 02 2025 10:34:40 %S A265813 2,2,5,7,13,53,67,71,197,241,311,353,1427,1667,1723,3023,4591,5113, %T A265813 5749,9817,14563,15241,19309,43717,51853,56599,67447,199403,265381, %U A265813 12141887,12871487,14397343,29723689,36424757,38216107,58916503,110667493,549157573,552607639 %N A265813 Denominators of primes-only best approximates (POBAs) to Pi; see Comments. %C A265813 Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences. Many terms of A265806 are also terms of A265801 (denominators of POBAs to tau). %e A265813 The POBAs to Pi start with 5/2, 7/2, 17/5, 23/7, 41/13, 167/53, 211/67, 223/71, 619/197. For example, if p and q are primes and q < 53, then 167/53 is closer to Pi than p/q is. %t A265813 x = Pi; z = 1000; p[k_] := p[k] = Prime[k]; %t A265813 t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; %t A265813 d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) %t A265813 t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; %t A265813 d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) %t A265813 v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; %t A265813 b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; %t A265813 y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265812/A265813 *) %t A265813 Numerator[tL] (* A265808 *) %t A265813 Denominator[tL] (* A265809 *) %t A265813 Numerator[tU] (* A265810 *) %t A265813 Denominator[tU] (* A265811 *) %t A265813 Numerator[y] (* A265812 *) %t A265813 Denominator[y] (* A265813 *) %Y A265813 Cf. A000040, A265759, A265808, A265809, A265810, A265811, A265812. %K A265813 nonn,frac %O A265813 1,1 %A A265813 _Clark Kimberling_, Jan 02 2016 %E A265813 More terms from _Bert Dobbelaere_, Jul 20 2022