A265814 Numerators of lower primes-only best approximates (POBAs) to e; see Comments.
5, 13, 19, 307, 443, 617, 2237, 2411, 2971, 5923, 7043, 7603, 11887, 12659, 15361, 24103, 75223, 89021, 128273, 283949, 423299, 1169027, 1587077, 1830211, 3062207, 5080939, 8481901, 9366979, 22675801, 67090433, 71625049, 191016521, 211670869, 221578729, 244402043, 428023867, 1451377009
Offset: 1
Examples
The lower POBAs to e; start with 5/2, 13/5, 19/7, 307/113, 443/163, 617/227, 2237/823. For example, if p and q are primes and q > 823, and p/q < e, then 2237/823 is closer to e than p/q is.
Programs
-
Mathematica
x = E; z = 1000; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265818/A265819 *) Numerator[tL] (* A265814 *) Denominator[tL] (* A265815 *) Numerator[tU] (* A265816 *) Denominator[tU] (* A265817 *) Numerator[y] (* A265818 *) Denominator[y] (* A265819 *)
Extensions
More terms from Bert Dobbelaere, Jul 21 2022
Comments