A265817 Denominators of upper primes-only best approximates (POBAs) to e; see Comments.
2, 5, 7, 11, 17, 29, 71, 4139, 5573, 6361, 9293, 17159, 18089, 2246039, 3135403, 3245939, 15812647, 23302423, 35724419, 36032933, 52372163, 107537039, 133106593, 167870293, 249402641, 260192623, 427246909, 475992263, 736166797, 1184975581, 1528278299, 2683676647, 5253849959, 5389332217
Offset: 1
Examples
The upper POBAs to e start with 77/2, 17/5, 23/7, 31/11, 47/17, 79/29, 193/71, 11251/4139. For example, if p and q are primes and q > 71, and p/q > e, then 193/71 is closer to e than p/q is.
Programs
-
Mathematica
x = E; z = 1000; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (*lower POBA*) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (*upper POBA*) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (*POBA,A265818/A265819*) Numerator[tL] (*A265814*) Denominator[tL] (*A265815*) Numerator[tU] (*A265816*) Denominator[tU] (*A265817*) Numerator[y] (*A265818*) Denominator[y] (*A265819*)
Extensions
More terms from Bert Dobbelaere, Jul 21 2022
Comments