A265818 Numerators of primes-only best approximates (POBAs) to e; see Comments.
7, 5, 13, 19, 193, 7043, 7603, 11251, 15149, 15361, 17291, 24103, 46643, 49171, 3062207, 5080939, 8481901, 8823377, 22675801, 63342553, 67090433, 71625049, 142362299, 221578729, 244402043, 428023867, 1293881119, 1587183239, 2095606361, 3221097589, 3905501983, 4072807391, 14649723833
Offset: 1
Examples
The POBAs to Pi start with 7/2, 5/2, 13/5, 19/7, 193/71, 7043/2591, 7603/2797. For example, if p and q are primes and q > 2591, then 7043/2591 is closer to e than p/q is.
Programs
-
Mathematica
x = E; z = 1000; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265818/A265819 *) Numerator[tL] (* A265814 *) Denominator[tL] (* A265815 *) Numerator[tU] (* A265816 *) Denominator[tU] (* A265817 *) Numerator[y] (* A265818 *) Denominator[y] (* A265819 *)
Extensions
More terms from Bert Dobbelaere, Jul 21 2022
Comments