This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265823 #12 Mar 05 2025 06:35:03 %S A265823 0,2,4,1,2,1,3,1,1,33,1,8,3,3,4,1,1,2,1,38,2,29,12,4,1,6,1,1,1,5,4,9, %T A265823 4,2,2,5,1,3,1,1,1,7,9,1,7,1,201,5,1,17,4,1,19,5,2,56,1,5,1,16,4,1,1, %U A265823 12,63,1,5,9,1,1,18,26,1,1,5,4,3,1,1,13,2,3,3,1,1 %N A265823 Continued fraction expansion of the prime zeta function at 2. %C A265823 Continued fraction of Sum_{n>=1} 1/prime(n)^2 = 0.4522474200410654985065... %H A265823 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeZetaFunction.html">Prime Zeta Function</a> %H A265823 Wikipedia, <a href="http://en.wikipedia.org/wiki/Prime_zeta_function">Prime Zeta Function</a> %H A265823 <a href="/index/Con#confC">Index entries for continued fractions for constants</a> %H A265823 <a href="/index/Z#zeta_function">Index entries for zeta function</a> %e A265823 1/2^2 + 1/3^2 + 1/5^2 + 1/7^2 + 1/11^2 + 1/13^2 +... = 1/(2 + 1/(4 + 1/(1 + 1/(2 + 1/(1 + 1/(3 + 1/(1 + 1/(1 + 1/...)))))))). %t A265823 ContinuedFraction[PrimeZetaP[2], 84] %Y A265823 Cf. A085548, A013679. %K A265823 nonn,cofr %O A265823 0,2 %A A265823 _Ilya Gutkovskiy_, Dec 16 2015