cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265823 Continued fraction expansion of the prime zeta function at 2.

This page as a plain text file.
%I A265823 #12 Mar 05 2025 06:35:03
%S A265823 0,2,4,1,2,1,3,1,1,33,1,8,3,3,4,1,1,2,1,38,2,29,12,4,1,6,1,1,1,5,4,9,
%T A265823 4,2,2,5,1,3,1,1,1,7,9,1,7,1,201,5,1,17,4,1,19,5,2,56,1,5,1,16,4,1,1,
%U A265823 12,63,1,5,9,1,1,18,26,1,1,5,4,3,1,1,13,2,3,3,1,1
%N A265823 Continued fraction expansion of the prime zeta function at 2.
%C A265823 Continued fraction of Sum_{n>=1} 1/prime(n)^2 = 0.4522474200410654985065...
%H A265823 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeZetaFunction.html">Prime Zeta Function</a>
%H A265823 Wikipedia, <a href="http://en.wikipedia.org/wiki/Prime_zeta_function">Prime Zeta Function</a>
%H A265823 <a href="/index/Con#confC">Index entries for continued fractions for constants</a>
%H A265823 <a href="/index/Z#zeta_function">Index entries for zeta function</a>
%e A265823 1/2^2 + 1/3^2 + 1/5^2 + 1/7^2 + 1/11^2 + 1/13^2 +... = 1/(2 + 1/(4 + 1/(1 + 1/(2 + 1/(1 + 1/(3 + 1/(1 + 1/(1 + 1/...)))))))).
%t A265823 ContinuedFraction[PrimeZetaP[2], 84]
%Y A265823 Cf. A085548, A013679.
%K A265823 nonn,cofr
%O A265823 0,2
%A A265823 _Ilya Gutkovskiy_, Dec 16 2015