This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265825 #9 Feb 16 2025 08:33:28 %S A265825 0,12,1,83,1,1,7,3,9,1,23,1,4,1,1,5,1,2,17,1,1,3,1,16,3,2,1,10,5,89,1, %T A265825 1,1,4,3,2,3,1,2,2,3,3,3,13,1,3,1,5,1,56,1,2,8,1,19,1,22,5,5,3,72,1,2, %U A265825 1,1,11,2,8,1,2,2,1,7,2,6,3,3,3,6,2,3,7,1 %N A265825 Continued fraction expansion of the prime zeta function at 4. %C A265825 Continued fraction of Sum_{n>=1} 1/prime(n)^4 = 0.0769931397642468449426... %H A265825 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeZetaFunction.html">Prime Zeta Function</a> %H A265825 Wikipedia, <a href="http://en.wikipedia.org/wiki/Prime_zeta_function">Prime Zeta Function</a> %H A265825 <a href="/index/Con#confC">Index entries for continued fractions for constants</a> %H A265825 <a href="/index/Z#zeta_function">Index entries for zeta function</a> %e A265825 1/2^4 + 1/3^4 + 1/5^4 +1/7^4 + 1/11^4 + 1/13^4 +... = 1/(12 + 1/(1 + 1/(83 + 1/(1 + 1/(1 + 1/(7 + 1/(3 + 1/(9 + 1/...)))))))). %t A265825 ContinuedFraction[PrimeZetaP[4], 82] %Y A265825 Cf. A085964, A013680. %K A265825 nonn,cofr %O A265825 0,2 %A A265825 _Ilya Gutkovskiy_, Dec 16 2015