cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265825 Continued fraction expansion of the prime zeta function at 4.

This page as a plain text file.
%I A265825 #9 Feb 16 2025 08:33:28
%S A265825 0,12,1,83,1,1,7,3,9,1,23,1,4,1,1,5,1,2,17,1,1,3,1,16,3,2,1,10,5,89,1,
%T A265825 1,1,4,3,2,3,1,2,2,3,3,3,13,1,3,1,5,1,56,1,2,8,1,19,1,22,5,5,3,72,1,2,
%U A265825 1,1,11,2,8,1,2,2,1,7,2,6,3,3,3,6,2,3,7,1
%N A265825 Continued fraction expansion of the prime zeta function at 4.
%C A265825 Continued fraction of Sum_{n>=1} 1/prime(n)^4 = 0.0769931397642468449426...
%H A265825 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeZetaFunction.html">Prime Zeta Function</a>
%H A265825 Wikipedia, <a href="http://en.wikipedia.org/wiki/Prime_zeta_function">Prime Zeta Function</a>
%H A265825 <a href="/index/Con#confC">Index entries for continued fractions for constants</a>
%H A265825 <a href="/index/Z#zeta_function">Index entries for zeta function</a>
%e A265825 1/2^4 + 1/3^4 + 1/5^4 +1/7^4 + 1/11^4 + 1/13^4 +... = 1/(12 + 1/(1 + 1/(83 + 1/(1 + 1/(1 + 1/(7 + 1/(3 + 1/(9 + 1/...)))))))).
%t A265825 ContinuedFraction[PrimeZetaP[4], 82]
%Y A265825 Cf. A085964, A013680.
%K A265825 nonn,cofr
%O A265825 0,2
%A A265825 _Ilya Gutkovskiy_, Dec 16 2015