cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265826 a(0) = 1, a(n) = Sum_{k=1..n} a(n-k)*ceiling(sin(k)).

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 24, 45, 84, 157, 293, 547, 1021, 1906, 3558, 6642, 12399, 23146, 43208, 80659, 150571, 281080, 524709, 979506, 1828503, 3413376, 6371955, 11894912, 22204949, 41451316, 77379669, 144449290, 269652192, 503375992, 939682290
Offset: 0

Views

Author

Griffin N. Macris, Apr 06 2016

Keywords

Comments

It appears that a(n) <= A088353(n). They are identical until n=11 where a(11) = 547, but A088353(n) = 548.
It also appears that a(n) <= A059633(n+2). They are identical until n=25 where a(25) = 3413376, but A059633(27) = 3413377.

Examples

			a(4) = 1*ceiling(sin(4)) + 1*ceiling(sin(3)) + 2*ceiling(sin(2)) + 4*ceiling(sin(1)) = 1*0 + 1*1 + 2*1 + 4*1 = 7.
		

Programs

  • Java
    int limit = 500; //limit index, can be changed for more terms
    BigInteger[] n = new BigInteger[limit];
    n[0] = BigInteger.ONE;
    System.out.println("0 1");
    for ( int i = 1; i < n.length; i++ ) {
       n[i] = BigInteger.ZERO;
       for(int k = 1; k <= i; k++) {
          n[i] = n[i].add(n[i-k].multiply(BigInteger.valueOf((long) Math.ceil(Math.sin(k)))));
       }
       System.out.println(i+" "+n[i]);
    }
  • Mathematica
    A[0] := 1
    A[n_] := A[n] = If[n <= 0, 0, Sum[A[n - k]Ceiling[Sin[k]], {k, 1, n}]]

Formula

a(0) = 1
a(n) = Sum_{k=1..n} a(n-k)*ceiling(sin(k)).