This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265831 #5 Dec 16 2015 05:56:41 %S A265831 1,0,0,0,4,0,0,0,16,9,0,0,64,36,14,0,256,144,137,19,1024,576,548,202, %T A265831 4120,2304,2192,1537,16847,9245,8768,6148,68522,37462,35106,24592, %U A265831 280649,153151,141382,98407,1122596,622810,572610,394796,4490428,2550289,2320167 %N A265831 Expansion of Product_{k>=1} 1/(1 - (5*k-1)*x^(5*k-1)). %H A265831 Vaclav Kotesovec, <a href="/A265831/b265831.txt">Table of n, a(n) for n = 0..5000</a> %F A265831 a(n) ~ c * 4^(n/4), where %F A265831 c = 1.073840819469157289995715447280332198042213811468819293923... if mod(n,4) = 0 %F A265831 c = 0.431347264451907652131063891031332936177772975542057097666... if mod(n,4) = 1 %F A265831 c = 0.283892524489889292147114138438462508437169743150135175791... if mod(n,4) = 2 %F A265831 c = 0.139829615705558896416806329024657454417365487147024035166... if mod(n,4) = 3. %t A265831 nmax = 40; CoefficientList[Series[Product[1/(1 - (5*k-1)*x^(5*k-1)), {k, 1, nmax}], {x, 0, nmax}], x] %Y A265831 Cf. A067553, A265820, A265821, A265828, A265829, A265830. %Y A265831 Cf. A265832, A265833, A265834. %K A265831 nonn %O A265831 0,5 %A A265831 _Vaclav Kotesovec_, Dec 16 2015