This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265834 #5 Dec 16 2015 05:58:11 %S A265834 1,1,1,1,1,1,7,7,7,7,7,18,54,54,54,54,70,136,352,352,352,373,590,986, %T A265834 2282,2282,2308,2610,3912,6288,14064,14095,14738,17881,25693,39949, %U A265834 86641,87449,93243,112101,158973,244550,525900,536105,585510,698658,979936 %N A265834 Expansion of Product_{k>=1} 1/(1 - (5*k-4)*x^(5*k-4)). %H A265834 Vaclav Kotesovec, <a href="/A265834/b265834.txt">Table of n, a(n) for n = 0..5000</a> %F A265834 a(n) ~ c * 6^(n/6), where %F A265834 c = 1.946161573585465742120451753889110403102785483969509157884... if mod(n,6) = 0 %F A265834 c = 1.492695368258335848636116399838163314228018468452433528714... if mod(n,6) = 1 %F A265834 c = 1.205892633747241909081118546347785156858709648302505136919... if mod(n,6) = 2 %F A265834 c = 1.062580541177612790307764142722360963628515836057478463493... if mod(n,6) = 3 %F A265834 c = 1.098873691517923934789388233817534832428257891275964607033... if mod(n,6) = 4 %F A265834 c = 1.239744254161848837318727201496086964789190390884460407810... if mod(n,6) = 5. %t A265834 nmax = 40; CoefficientList[Series[Product[1/(1 - (5*k-4)*x^(5*k-4)), {k, 1, nmax}], {x, 0, nmax}], x] %Y A265834 Cf. A067553, A265820, A265821, A265828, A265829, A265830. %Y A265834 Cf. A265831, A265832, A265833. %K A265834 nonn %O A265834 0,7 %A A265834 _Vaclav Kotesovec_, Dec 16 2015