This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265836 #11 Aug 16 2019 12:52:50 %S A265836 1,2,10,32,120,342,1206,3320,10604,29578,88342,239400,702020,1863654, %T A265836 5262650,13948824,38427192,100244162,272822282,703972024,1883948848, %U A265836 4839944150,12779850278,32548367784,85335644100,215826029018,560407835934,1412632075328 %N A265836 Expansion of Product_{k>=1} 1/(1 - k*(k+1)*x^k). %H A265836 Vaclav Kotesovec, <a href="/A265836/b265836.txt">Table of n, a(n) for n = 0..2000</a> %F A265836 a(n) ~ c * 6^(n/2), where %F A265836 c = 79.0418032646837469192452349...... if n is even, %F A265836 c = 78.4480460169710091436913691...... if n is odd. %p A265836 b:= proc(n, i) option remember; `if`(n=0 or i=1, %p A265836 2^n, b(n, i-1)+(1+i)*i*b(n-i, min(n-i, i))) %p A265836 end: %p A265836 a:= n-> b(n$2): %p A265836 seq(a(n), n=0..33); # _Alois P. Heinz_, Aug 16 2019 %t A265836 nmax = 40; CoefficientList[Series[Product[1/(1 - k*(k+1)*x^k), {k, 1, nmax}], {x, 0, nmax}], x] %Y A265836 Cf. A074141, A077335, A092485, A305204. %K A265836 nonn %O A265836 0,2 %A A265836 _Vaclav Kotesovec_, Dec 16 2015