This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265837 #14 Sep 07 2023 15:51:54 %S A265837 1,1,9,36,164,505,2474,7273,31008,103644,379890,1226802,4747529, %T A265837 14553648,52167558,171639695,583371802,1851395692,6427705062, %U A265837 19983302144,67235043192,214615427776,697704303005,2194982897304,7262755260410,22402942281766,72461661415093 %N A265837 Expansion of Product_{k>=1} 1/(1 - k^3*x^k). %H A265837 Vaclav Kotesovec, <a href="/A265837/b265837.txt">Table of n, a(n) for n = 0..2000</a> %F A265837 a(n) ~ c * 3^n, where %F A265837 c = 86.60286320343345379122228784466307940393110978... if n mod 3 = 0 %F A265837 c = 86.27536745612304663727011387030370600864018892... if n mod 3 = 1 %F A265837 c = 86.29819842537784019895326532818285333403267092... if n mod 3 = 2. %F A265837 G.f.: exp(Sum_{k>=1} Sum_{j>=1} j^(3*k)*x^(j*k)/k). - _Ilya Gutkovskiy_, Jun 14 2018 %t A265837 nmax = 40; CoefficientList[Series[Product[1/(1 - k^3*x^k), {k, 1, nmax}], {x, 0, nmax}], x] %Y A265837 Cf. A006906, A077335, A265838, A265839, A265840. %Y A265837 Column k=3 of A292193. %K A265837 nonn %O A265837 0,3 %A A265837 _Vaclav Kotesovec_, Dec 16 2015