cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265837 Expansion of Product_{k>=1} 1/(1 - k^3*x^k).

This page as a plain text file.
%I A265837 #14 Sep 07 2023 15:51:54
%S A265837 1,1,9,36,164,505,2474,7273,31008,103644,379890,1226802,4747529,
%T A265837 14553648,52167558,171639695,583371802,1851395692,6427705062,
%U A265837 19983302144,67235043192,214615427776,697704303005,2194982897304,7262755260410,22402942281766,72461661415093
%N A265837 Expansion of Product_{k>=1} 1/(1 - k^3*x^k).
%H A265837 Vaclav Kotesovec, <a href="/A265837/b265837.txt">Table of n, a(n) for n = 0..2000</a>
%F A265837 a(n) ~ c * 3^n, where
%F A265837 c = 86.60286320343345379122228784466307940393110978... if n mod 3 = 0
%F A265837 c = 86.27536745612304663727011387030370600864018892... if n mod 3 = 1
%F A265837 c = 86.29819842537784019895326532818285333403267092... if n mod 3 = 2.
%F A265837 G.f.: exp(Sum_{k>=1} Sum_{j>=1} j^(3*k)*x^(j*k)/k). - _Ilya Gutkovskiy_, Jun 14 2018
%t A265837 nmax = 40; CoefficientList[Series[Product[1/(1 - k^3*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A265837 Cf. A006906, A077335, A265838, A265839, A265840.
%Y A265837 Column k=3 of A292193.
%K A265837 nonn
%O A265837 0,3
%A A265837 _Vaclav Kotesovec_, Dec 16 2015