cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265839 Expansion of Product_{k>=1} 1/(1 - k^5*x^k).

This page as a plain text file.
%I A265839 #12 Sep 07 2023 15:52:31
%S A265839 1,1,33,276,2324,13225,145586,760057,6836328,45996924,322816122,
%T A265839 2064921330,16881567137,96217644312,708147553326,4769313137735,
%U A265839 31412238427954,198869428043476,1442034056253438,8596120396405880,58954590481229064,387170921610808720
%N A265839 Expansion of Product_{k>=1} 1/(1 - k^5*x^k).
%H A265839 Vaclav Kotesovec, <a href="/A265839/b265839.txt">Table of n, a(n) for n = 0..1240</a>
%F A265839 a(n) ~ c * 3^(5*n/3), where
%F A265839 c = 12.8519823810391431573687005461910113782018563173082562291... if n mod 3 = 0
%F A265839 c = 12.4535903496941652158697054030067622653283880393322526099... if n mod 3 = 1
%F A265839 c = 12.5138855694494734654940524026530463555984202132997900068... if n mod 3 = 2.
%F A265839 G.f.: exp(Sum_{k>=1} Sum_{j>=1} j^(5*k)*x^(j*k)/k). - _Ilya Gutkovskiy_, Jun 14 2018
%t A265839 nmax = 40; CoefficientList[Series[Product[1/(1 - k^5*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A265839 Cf. A006906, A077335, A265837, A265838, A265842.
%Y A265839 Column k=5 of A292193.
%K A265839 nonn
%O A265839 0,3
%A A265839 _Vaclav Kotesovec_, Dec 16 2015