cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265840 Expansion of Product_{k>=1} (1 + k^3*x^k).

This page as a plain text file.
%I A265840 #11 Sep 07 2023 15:52:49
%S A265840 1,1,8,35,91,405,1069,3799,8686,36744,86310,235776,686329,1605779,
%T A265840 5230579,13191702,30608501,73907925,206052723,433747560,1324608945,
%U A265840 2995740974,6973434054,15364943439,35816669079,86662644756,184871083828,502089539734,1098571699830
%N A265840 Expansion of Product_{k>=1} (1 + k^3*x^k).
%H A265840 Vaclav Kotesovec, <a href="/A265840/b265840.txt">Table of n, a(n) for n = 0..2000</a>
%F A265840 G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*j^(3*k)*x^(j*k)/k). - _Ilya Gutkovskiy_, Jun 14 2018
%F A265840 Conjecture: log(a(n)) ~ 3*sqrt(n/2) * (log(2*n) - 2). - _Vaclav Kotesovec_, Dec 27 2020
%t A265840 nmax = 40; CoefficientList[Series[Product[1 + k^3*x^k, {k, 1, nmax}], {x, 0, nmax}], x]
%Y A265840 Cf. A022629, A092484, A265837, A265841, A265842.
%Y A265840 Column k=3 of A292189.
%K A265840 nonn
%O A265840 0,3
%A A265840 _Vaclav Kotesovec_, Dec 16 2015