cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265841 Expansion of Product_{k>=1} (1 + k^4*x^k).

This page as a plain text file.
%I A265841 #11 Sep 07 2023 15:56:53
%S A265841 1,1,16,97,337,2177,7313,38529,108594,717186,2053522,7527458,30757155,
%T A265841 88042387,448973459,1390503396,4087546309,12699966117,49599776261,
%U A265841 124699632310,608410782855,1651128186296,4862631132392,13170300313769,39285370060347,130999461143020
%N A265841 Expansion of Product_{k>=1} (1 + k^4*x^k).
%H A265841 Vaclav Kotesovec, <a href="/A265841/b265841.txt">Table of n, a(n) for n = 0..2000</a>
%F A265841 G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*j^(4*k)*x^(j*k)/k). - _Ilya Gutkovskiy_, Jun 14 2018
%F A265841 Conjecture: log(a(n)) ~ 4*sqrt(n/2) * (log(2*n) - 2). - _Vaclav Kotesovec_, Dec 27 2020
%t A265841 nmax = 40; CoefficientList[Series[Product[1 + k^4*x^k, {k, 1, nmax}], {x, 0, nmax}], x]
%Y A265841 Cf. A022629, A092484, A265838, A265840, A265842.
%Y A265841 Column k=4 of A292189.
%K A265841 nonn
%O A265841 0,3
%A A265841 _Vaclav Kotesovec_, Dec 16 2015