cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265842 Expansion of Product_{k>=1} (1 + k^5*x^k).

This page as a plain text file.
%I A265842 #11 Sep 07 2023 15:56:33
%S A265842 1,1,32,275,1267,11925,51445,406183,1406614,14690040,51144366,
%T A265842 251885088,1481359033,5108404955,42614629915,158222158038,
%U A265842 588574803125,2360755022421,13255325882835,39266011999104,325719196861377,1031732678138822,3791401325667894
%N A265842 Expansion of Product_{k>=1} (1 + k^5*x^k).
%H A265842 Vaclav Kotesovec, <a href="/A265842/b265842.txt">Table of n, a(n) for n = 0..2000</a>
%F A265842 G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*j^(5*k)*x^(j*k)/k). - _Ilya Gutkovskiy_, Oct 18 2018
%F A265842 Conjecture: log(a(n)) ~ 5*sqrt(n/2) * (log(2*n) - 2). - _Vaclav Kotesovec_, Dec 27 2020
%t A265842 nmax = 40; CoefficientList[Series[Product[1 + k^5*x^k, {k, 1, nmax}], {x, 0, nmax}], x]
%Y A265842 Cf. A022629, A092484, A265839, A265840, A265841.
%Y A265842 Column k=5 of A292189.
%K A265842 nonn
%O A265842 0,3
%A A265842 _Vaclav Kotesovec_, Dec 16 2015