cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265844 Expansion of Product_{k>=1} (1 + k^2*x^k)/(1 - k^2*x^k).

This page as a plain text file.
%I A265844 #9 Dec 16 2015 11:33:39
%S A265844 1,2,10,36,118,376,1188,3456,10054,28814,79280,215844,581748,1528456,
%T A265844 3987384,10295952,26130982,65874532,164661622,406787220,998529752,
%U A265844 2434022304,5879630196,14124455856,33734350692,80000820426,188787849968,443372664504,1035137265552
%N A265844 Expansion of Product_{k>=1} (1 + k^2*x^k)/(1 - k^2*x^k).
%C A265844 Convolution of A092484 and A077335.
%H A265844 Vaclav Kotesovec, <a href="/A265844/b265844.txt">Table of n, a(n) for n = 0..2000</a>
%F A265844 a(n) ~ c * 3^(2*n/3), where
%F A265844 c = 33024.782174678163138510272317... if mod(n,3) = 0
%F A265844 c = 33024.230416953709449028604542... if mod(n,3) = 1
%F A265844 c = 33024.292470246596667257649964... if mod(n,3) = 2.
%t A265844 nmax = 40; CoefficientList[Series[Product[(1 + k^2*x^k)/(1 - k^2*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A265844 Cf. A015128, A077335, A092484, A265758.
%K A265844 nonn
%O A265844 0,2
%A A265844 _Vaclav Kotesovec_, Dec 16 2015