This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265847 #23 Jan 04 2016 17:54:32 %S A265847 0,0,2,3,2,1,2,2,0,3,2,1,2,6,1,15,2,1,2 %N A265847 Number of different quasi-orders with n labeled elements, modulo n. %C A265847 Remainder when number of different quasi-orders with n labeled elements is divided by n. %C A265847 If n is an odd prime, a(n) = 2 because of the fact that A000798(p^k) == k + 1 mod p for all primes p. For k = 1, A000798(p) == 2 mod p for all primes p. %C A265847 Currently, A000798 has values for n <= 18. However, thanks to A000798(p) == 2 mod p, we know that a(19) = 2. %C A265847 How is the distribution of other terms such as 1 and 3 in this sequence? %H A265847 Muhammet Yasir Kizmaz, <a href="http://arxiv.org/abs/1503.08359">On The Number Of Topologies On A Finite Set</a>, arXiv preprint arXiv:1503.08359 [math.NT], 2015. %F A265847 a(A000040(n)) = 2, for n > 1. %e A265847 a(4) = A000798(4) mod 4 = 355 mod 4 = 3. %e A265847 a(5) = A000798(5) mod 5 = 6942 mod 5 = 2. %e A265847 a(6) = A000798(6) mod 6 = 209527 mod 6 = 1. %Y A265847 Cf. A000798. %K A265847 nonn,more %O A265847 1,3 %A A265847 _Altug Alkan_, Dec 21 2015