This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265848 #21 May 13 2025 02:40:12 %S A265848 1,1,1,1,1,2,3,1,1,3,4,1,1,4,6,10,5,1,1,5,10,15,6,1,1,6,15,20,35,21,7, %T A265848 1,1,7,21,35,56,28,8,1,1,8,28,56,70,126,84,36,9,1,1,9,36,84,126,210, %U A265848 120,45,10,1,1,10,45,120,210,252,462,330,165,55,11,1,1,11,55,165,330,462 %N A265848 Pascal's triangle, right and left halves interchanged. %C A265848 Concatenations of rows of A014413 and A034868. %C A265848 Alternative mirrored variant: concatenation of A034869 and A014462. %H A265848 Reinhard Zumkeller, <a href="/A265848/b265848.txt">Rows n = 0..150 of triangle, flattened</a> %H A265848 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>. %F A265848 T(n,k) = A007318(n, (k + floor((n+2)/2)) mod (n+1)). %F A265848 T(n,k) = if k <= [(n+1)/2] then A014413(n,k+1) else A034868(n,k-[(n+1)/2]). %F A265848 T(n,0) = A037952(n) for n > 0. %F A265848 T(n,n) = A001405(n). %e A265848 . 0: 1 %e A265848 . 1: 1 1 %e A265848 . 2: 1 1 2 %e A265848 . 3: 3 1 1 3 %e A265848 . 4: 4 1 1 4 6 %e A265848 . 5: 10 5 1 1 5 10 %e A265848 . 6: 15 6 1 1 6 15 20 %e A265848 . 7: 35 21 7 1 1 7 21 35 %e A265848 . 8: 56 28 8 1 1 8 28 56 70 %e A265848 . 9: 126 84 36 9 1 1 9 36 84 126 %e A265848 . 10: 210 120 45 10 1 1 10 45 120 210 252 %e A265848 . 11: 462 330 165 55 11 1 1 11 55 165 330 462 %e A265848 . 12: 792 495 220 66 12 1 1 12 66 220 495 792 924 . %t A265848 row[n_] := Binomial[n, Join[Range[Floor[n/2] + 1, n], Range[0, Floor[n/2]]]]; Array[row, 12, 0] // Flatten (* _Amiram Eldar_, May 13 2025 *) %o A265848 (Haskell) %o A265848 a265848 n k = a265848_tabl !! n !! k %o A265848 a265848_row n = a265848_tabl !! n %o A265848 a265848_tabl = zipWith (++) ([] : a014413_tabf) a034868_tabf %Y A265848 Cf. A014413, A014462, A034868, A034869, A007318, A001405, A037952, A000079 (row sums), A001142 (row products). %K A265848 nonn,tabl,easy %O A265848 0,6 %A A265848 _Reinhard Zumkeller_, Dec 24 2015