This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265892 #17 Jun 03 2018 02:02:41 %S A265892 1,1,0,1,1,0,1,1,1,0,1,2,1,1,0,1,1,1,1,1,0,1,2,2,2,1,1,0,1,1,2,1,1,1, %T A265892 1,0,1,3,2,3,2,2,1,1,0,1,2,3,2,2,3,1,1,1,0,1,3,1,2,3,1,2,2,1,1,0,1,2, %U A265892 2,1,1,1,2,2,1,1,1,0,1,3,3,4,2,2,2,3,3,2,1,1,0,1,1,3,2,3,3,3,2,2,1,1,1,1,0,1,3,3,4,3,4,4,4,3,3,2,2,1,1,0 %N A265892 Array read by ascending antidiagonals: A(n,k) = A265893(A265609(n,k)), with n as row >= 0, k as column >= 0; the number of significant digits counted without trailing zeros in the factorial base representation of rising factorial n^(k) = (n+k-1)!/(n-1)!. %C A265892 Square array A(row,col) is read by ascending antidiagonals as: A(0,0), A(1,0), A(0,1), A(2,0), A(1,1), A(0,2), A(3,0), A(2,1), A(1,2), A(0,3), ... %H A265892 Antti Karttunen, <a href="/A265892/b265892.txt">Table of n, a(n) for n = 0..7259; the first 120 antidiagonals of array</a> %H A265892 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a> %F A265892 A(n,k) = A265893(A265609(n,k)). %e A265892 The top left corner of the array A265609 with its terms shown in factorial base (A007623) looks like this: %e A265892 1, 0, 0, 0, 0, 0, 0, 0, 0 %e A265892 1, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000 %e A265892 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000 %e A265892 1, 11, 200, 2200, 30000, 330000, 4000000, 44000000, 500000000 %e A265892 1, 20, 310, 10000, 110000, 1220000, 14000000, 160000000, 1830000000 %e A265892 1, 21, 1100, 13300, 220000, 3000000, 36000000, 452000000, 5500000000 %e A265892 1, 100, 1300, 24000, 411000, 6000000, 82000000, 1100000000, 13300000000 %e A265892 1, 101, 2110, 41000, 1000000, 13000000, 174000000, 2374000000, 30360000000 %e A265892 - %e A265892 Counting such digits for each term, but without the trailing zeros gives us the top left corner of this array: %e A265892 - %e A265892 The top left corner of the array: %e A265892 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 %e A265892 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 %e A265892 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 %e A265892 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1 %e A265892 1, 1, 2, 1, 2, 3, 2, 2, 3, 1, 2, 3, 2, 2, 3, 1, 2, 3, 2, 2, 3, 1, 2, 3, 2 %e A265892 1, 2, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 1, 2, 3, 4, 3 %e A265892 1, 1, 2, 2, 3, 1, 2, 2, 3, 4, 3, 1, 2, 3, 4, 2, 3, 2, 3, 4, 1, 2, 3, 3, 4 %e A265892 1, 3, 3, 2, 1, 2, 3, 4, 4, 4, 3, 4, 2, 3, 3, 4, 3, 4, 3, 3, 4, 2, 4, 5, 4 %e A265892 1, 2, 1, 1, 2, 3, 4, 3, 3, 2, 3, 2, 4, 5, 4, 3, 4, 3, 3, 4, 5, 3, 4, 3, 4 %e A265892 1, 3, 2, 4, 3, 4, 3, 4, 2, 3, 4, 5, 4, 3, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 3 %e A265892 1, 2, 3, 2, 3, 4, 3, 4, 5, 3, 4, 5, 3, 4, 5, 3, 4, 5, 5, 4, 5, 4, 5, 3, 4 %e A265892 1, 3, 3, 4, 4, 4, 3, 4, 4, 5, 4, 3, 3, 5, 6, 6, 5, 6, 5, 6, 5, 6, 4, 5, 6 %e A265892 1, 1, 3, 3, 3, 2, 3, 3, 4, 4, 5, 3, 4, 5, 5, 4, 5, 4, 5, 4, 5, 6, 4, 5, 4 %e A265892 1, 3, 4, 4, 4, 5, 4, 5, 5, 5, 5, 6, 4, 5, 6, 6, 5, 6, 5, 7, 6, 5, 5, 5, 5 %e A265892 1, 2, 3, 2, 4, 3, 4, 4, 4, 4, 5, 5, 6, 5, 5, 4, 6, 5, 6, 5, 4, 4, 4, 5, 6 %e A265892 1, 3, 1, 2, 3, 4, 5, 4, 3, 4, 4, 5, 5, 7, 6, 7, 6, 7, 5, 6, 7, 5, 4, 5, 6 %e A265892 1, 2, 4, 3, 5, 4, 3, 5, 6, 6, 5, 6, 6, 5, 6, 5, 6, 4, 5, 6, 4, 4, 6, 7, 8 %e A265892 1, 3, 3, 5, 4, 5, 5, 6, 5, 6, 5, 7, 6, 7, 6, 7, 4, 5, 6, 8, 5, 6, 7, 8, 6 %e A265892 1, 1, 3, 3, 4, 3, 5, 4, 5, 4, 6, 5, 6, 5, 6, 6, 7, 6, 7, 4, 5, 6, 7, 5, 6 %e A265892 ... %o A265892 (Scheme) %o A265892 (define (A265892 n) (A265892bi (A025581 n) (A002262 n))) %o A265892 (define (A265892bi row col) (A265893 (A265609bi row col))) %Y A265892 Cf. A007623, A265609. %Y A265892 Row 0: A000007, rows 1-2: A000012, row 3: A000034 (see comment in A001710). %Y A265892 Column 0: A000012, column 1: A265893. %Y A265892 Cf. also array A265890. %K A265892 nonn,tabl,base %O A265892 0,12 %A A265892 _Antti Karttunen_, Dec 20 2015