cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265901 Square array read by descending antidiagonals: A(n,1) = A188163(n), and for k > 1, A(n,k) = A087686(1+A(n,k-1)).

This page as a plain text file.
%I A265901 #50 Sep 20 2016 13:25:24
%S A265901 1,2,3,4,7,5,8,15,12,6,16,31,27,14,9,32,63,58,30,21,10,64,127,121,62,
%T A265901 48,24,11,128,255,248,126,106,54,26,13,256,511,503,254,227,116,57,29,
%U A265901 17,512,1023,1014,510,475,242,120,61,38,18,1024,2047,2037,1022,978,496,247,125,86,42,19,2048,4095,4084,2046,1992,1006,502,253,192,96,45,20
%N A265901 Square array read by descending antidiagonals: A(n,1) = A188163(n), and for k > 1, A(n,k) = A087686(1+A(n,k-1)).
%C A265901 Square array read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
%C A265901 The topmost row (row 1) of the array is A000079 (powers of 2), and in general each row 2^k contains the sequence (2^n - k), starting from the term (2^(k+1) - k). This follows from the properties (3) and (4) of A004001 given on page 227 of Kubo & Vakil paper (page 3 in PDF).
%C A265901 Moreover, each row 2^k - 1 (for k >= 2) contains the sequence 2^n - n - (k-2), starting from the term (2^(k+1) - (2k-1)). To see why this holds, consider the definitions of sequences A162598 and A265332, the latter which also illustrates how the frequency counts Q_n for A004001 are recursively constructed (in the Kubo & Vakil paper).
%H A265901 Antti Karttunen, <a href="/A265901/b265901.txt">Table of n, a(n) for n = 1..210; the first 20 antidiagonals of array</a>
%H A265901 T. Kubo and R. Vakil, <a href="http://dx.doi.org/10.1016/0012-365X(94)00303-Z">On Conway's recursive sequence</a>, Discr. Math. 152 (1996), 225-252.
%H A265901 <a href="/index/Ho#Hofstadter">Index entries for Hofstadter-type sequences</a>
%H A265901 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A265901 For the first column k=1, A(n,1) = A188163(n), for columns k > 1, A(n,k) = A087686(1+A(n,k-1)).
%e A265901 The top left corner of the array:
%e A265901    1,  2,   4,   8,  16,   32,   64,  128,  256,   512,  1024, ...
%e A265901    3,  7,  15,  31,  63,  127,  255,  511, 1023,  2047,  4095, ...
%e A265901    5, 12,  27,  58, 121,  248,  503, 1014, 2037,  4084,  8179, ...
%e A265901    6, 14,  30,  62, 126,  254,  510, 1022, 2046,  4094,  8190, ...
%e A265901    9, 21,  48, 106, 227,  475,  978, 1992, 4029,  8113, 16292, ...
%e A265901   10, 24,  54, 116, 242,  496, 1006, 2028, 4074,  8168, 16358, ...
%e A265901   11, 26,  57, 120, 247,  502, 1013, 2036, 4083,  8178, 16369, ...
%e A265901   13, 29,  61, 125, 253,  509, 1021, 2045, 4093,  8189, 16381, ...
%e A265901   17, 38,  86, 192, 419,  894, 1872, 3864, 7893, 16006, 32298, ...
%e A265901   18, 42,  96, 212, 454,  950, 1956, 3984, 8058, 16226, 32584, ...
%e A265901   19, 45, 102, 222, 469,  971, 1984, 4020, 8103, 16281, 32650, ...
%e A265901   20, 47, 105, 226, 474,  977, 1991, 4028, 8112, 16291, 32661, ...
%e A265901   22, 51, 112, 237, 490,  999, 2020, 4065, 8158, 16347, 32728, ...
%e A265901   23, 53, 115, 241, 495, 1005, 2027, 4073, 8167, 16357, 32739, ...
%e A265901   25, 56, 119, 246, 501, 1012, 2035, 4082, 8177, 16368, 32751, ...
%e A265901   28, 60, 124, 252, 508, 1020, 2044, 4092, 8188, 16380, 32764, ...
%e A265901   ...
%o A265901 (Scheme)
%o A265901 (define (A265901 n) (A265901bi (A002260 n) (A004736 n)))
%o A265901 (define (A265901bi row col) (if (= 1 col) (A188163 row) (A087686 (+ 1 (A265901bi row (- col 1))))))
%Y A265901 Inverse permutation: A267102.
%Y A265901 Transpose: A265903.
%Y A265901 Cf. A265900 (main diagonal).
%Y A265901 Cf. A162598 (row index of n in array), A265332 (column index of n in array).
%Y A265901 Cf. A004001, A051135, A088359, A087686.
%Y A265901 Column 1: A188163.
%Y A265901 Column 2: A266109.
%Y A265901 Row 1: A000079 (2^n).
%Y A265901 Row 2: A000225 (2^n - 1, from 3 onward).
%Y A265901 Row 3: A000325 (2^n - n, from 5 onward).
%Y A265901 Row 4: A000918 (2^n - 2, from 6 onward).
%Y A265901 Row 5: A084634 (?, from 9 onward).
%Y A265901 Row 6: A132732 (2^n - 2n + 2, from 10 onward).
%Y A265901 Row 7: A000295 (2^n - n - 1, from 11 onward).
%Y A265901 Row 8: A036563 (2^n - 3).
%Y A265901 Row 9: A084635 (?, from 17 onward).
%Y A265901 Row 12: A048492 (?, from 20 onward).
%Y A265901 Row 13: A249453 (?, from 22 onward).
%Y A265901 Row 14: A183155 (2^n - 2n + 1, from 23 onward. Cf. also A244331).
%Y A265901 Row 15: A000247 (2^n - n - 2, from 25 onward).
%Y A265901 Row 16: A028399 (2^n - 4).
%Y A265901 Cf. also permutations A267111, A267112.
%K A265901 nonn,tabl
%O A265901 1,2
%A A265901 _Antti Karttunen_, Dec 18 2015