This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A265912 #8 Oct 17 2023 19:18:27 %S A265912 0,2,3,4,4,5,5,6,6,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11,11,11,11,11, %T A265912 12,12,12,12,12,12,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15,15,15, %U A265912 15,16,16,16,16,16,16,16,17,17,17,17,17,17,17,17 %N A265912 Smallest m such that A014631(n) occurs in row m of Pascal's triangle. %C A265912 Each n occurs A126257(n) times consecutively. %H A265912 Reinhard Zumkeller, <a href="/A265912/b265912.txt">Table of n, a(n) for n = 1..10000</a> %e A265912 First occurrences of z(n)=A014631(n) in the left part of Pascal's triangle, repetitions marked: %e A265912 . 0: z(1) [1] %e A265912 . 1: *z(1) [1] %e A265912 . 2: *z(1) z(2) [1,2] %e A265912 . 3: *z(1) z(3) [1,3] %e A265912 . 4: *z(1) z(4) z(5) [1,4,6] %e A265912 . 5: *z(1) z(6) z(7) [1,5,10] %e A265912 . 6: *z(1) *z(5) z(8) z(9) [1,6,15,20] %e A265912 . 7: *z(1) z(10) z(11) z(12) [1,7,21,35] %e A265912 . 8: *z(1) z(13) z(14) z(15) z(16) [1,8,28,56,70] %e A265912 . 9: *z(1) z(17) z(18) z(19) z(20) [1,9,36,84,126] %e A265912 . 10: *z(1) *z(7) z(21) z(22) z(23) z(24) [1,10,45,120,210,252] %e A265912 . 11: *z(1) z(25) z(26) z(27) z(28) z(29) [1,11,55,165,330,462] %e A265912 . 12: *z(1) z(30) z(31) z(32) z(33) z(34) z(35) [1,12,66,220,495,792,924] %e A265912 --------------------------------------------------------------------------- %e A265912 . n: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 %e A265912 . z(n): 1 2 3 4 6 5 10 15 20 7 21 35 8 28 56 70 9 36 %o A265912 (Haskell) %o A265912 import Data.List (findIndex); import Data.Maybe (fromJust) %o A265912 a265912 = fromJust . (flip findIndex a007318_tabl) . elem . a014631 %o A265912 (Python) %o A265912 from itertools import count, islice %o A265912 def A265912_gen(): # generator of terms %o A265912 s, c =(1,), set() %o A265912 for i in count(0): %o A265912 for d in s: %o A265912 if d not in c: %o A265912 yield i %o A265912 c.add(d) %o A265912 s=(1,)+tuple(s[j]+s[j+1] for j in range(len(s)-1)) + ((s[-1]<<1,) if i&1 else ()) %o A265912 A265912_list = list(islice(A265912_gen(),30)) # _Chai Wah Wu_, Oct 17 2023 %Y A265912 Cf. A007318, A014631, A119629. %K A265912 nonn %O A265912 1,2 %A A265912 _Reinhard Zumkeller_, Dec 18 2015