cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265947 Total size of all principal order ideals in the poset of integer partitions of n with the refinement order.

This page as a plain text file.
%I A265947 #47 Apr 06 2020 15:53:20
%S A265947 1,1,3,6,14,26,55,99,192,340,619,1063,1873,3129,5308,8718,14385,23116,
%T A265947 37346,58949,93294,145131,225623,345833,529976,801675,1211225,1811558,
%U A265947 2703327,3998289,5901849,8641160,12623450,18315370,26503133,38119289,54691750,78028166,111041918,157250528,222105633
%N A265947 Total size of all principal order ideals in the poset of integer partitions of n with the refinement order.
%C A265947 a(n) is the number of refinement-ordered pairs of integer partitions of n. Every such pair (x,y) is a multiset union x and a multiset of sums y of some weakly ordered sequence of integer partitions, so this sequence is dominated by A063834 (twice partitioned numbers). - _Gus Wiseman_, May 01 2016
%H A265947 Jon Mark Perry et al., <a href="http://mathoverflow.net/questions/226656/counting-refinements-of-partitions">Counting refinements of partitions</a>, Mathoverflow, 2015.
%e A265947 a(4) = 14 ordered pairs of partitions: {(4,4), (4,22), (4,31), (4,211), (4,1111), (22,22), (22,211), (22,1111), (31,31), (31,211), (31,1111), (211,211), (211,1111), (1111,1111)}.
%o A265947 (Sage)
%o A265947 def A265947(n):
%o A265947     P = Posets.IntegerPartitions(n)
%o A265947     return sum( len(P.order_ideal([p])) for p in P )
%o A265947 (Sage) # Alternative:
%o A265947 def A265947(n):
%o A265947     return Posets.IntegerPartitions(n).relations_number() # _F. Chapoton_, Feb 26 2020
%Y A265947 Cf. A001764, A002846, A213242, A213385, A213427, A063834.
%K A265947 nonn
%O A265947 0,3
%A A265947 _Max Alekseyev_, Dec 23 2015