A265967 Number of nX2 0..4 arrays with the absolute differences of each element with its with horizontal and vertical neighbors unique.
25, 288, 1504, 7656, 38096, 190308, 953072, 4776628, 23912032, 119676172, 599079504, 2999395220, 15015056688, 75162919892, 376276088880, 1883701849404, 9429821433376, 47206168911396, 236319556068624, 1183033090841396
Offset: 1
Keywords
Examples
Some solutions for n=4 ..3..0....3..0....4..4....2..2....2..3....0..1....3..1....2..3....2..3....4..1 ..3..1....1..1....0..0....1..3....2..3....3..3....0..4....0..0....4..0....0..3 ..0..1....0..3....3..3....1..0....0..0....4..4....0..3....1..4....3..1....0..4 ..0..3....4..4....2..2....4..4....4..4....2..1....4..1....3..2....0..4....3..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A265973.
Formula
Empirical: a(n) = 8*a(n-2) +76*a(n-3) +219*a(n-4) -150*a(n-5) -2179*a(n-6) -6990*a(n-7) -7878*a(n-8) +14114*a(n-9) +97811*a(n-10) +209622*a(n-11) +139056*a(n-12) -409764*a(n-13) -1836900*a(n-14) -2835340*a(n-15) -1654712*a(n-16) +6180672*a(n-17) +17827872*a(n-18) +20705808*a(n-19) +4962208*a(n-20) -56431488*a(n-21) -79309568*a(n-22) -99599360*a(n-23) +85772288*a(n-24) +144689152*a(n-25) +353329152*a(n-26) -42172416*a(n-27) -139067392*a(n-28) -541589504*a(n-29) +2097152*a(n-30) +25165824*a(n-31) +301989888*a(n-32) for n>33
Comments