cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265976 Expansion of Product_{k>=1} 1/(1 - 5*k*x^k).

This page as a plain text file.
%I A265976 #10 Aug 23 2019 20:52:02
%S A265976 1,5,35,190,1070,5525,29080,147485,752790,3789170,19105800,95794930,
%T A265976 480650335,2406018490,12047084370,60264282575,301493182380,
%U A265976 1507758356660,7540528037090,37705593514220,188545393000350,942756783659980,4713958620697385,23570092258449540
%N A265976 Expansion of Product_{k>=1} 1/(1 - 5*k*x^k).
%H A265976 Vaclav Kotesovec, <a href="/A265976/b265976.txt">Table of n, a(n) for n = 0..1000</a>
%F A265976 a(n) ~ c * 5^n, where c = Product_{m>=2} 1/(1 - m/5^(m-1)) = 1.977268427518901757865749340705853730491796767544158844539130847296...
%p A265976 b:= proc(n, i) option remember; `if`(n=0 or i=1,
%p A265976       5^n, b(n, i-1) +i*5*b(n-i, min(n-i, i)))
%p A265976     end:
%p A265976 a:= n-> b(n$2):
%p A265976 seq(a(n), n=0..32);  # _Alois P. Heinz_, Aug 23 2019
%t A265976 nmax=40; CoefficientList[Series[Product[1/(1-5*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A265976 Cf. A006906, A265951, A265974, A265975.
%Y A265976 Cf. A246935, A246937.
%K A265976 nonn
%O A265976 0,2
%A A265976 _Vaclav Kotesovec_, Dec 19 2015