A266003 Least nonnegative integer y such that n = x^4 - y^3 + z^2 for some nonnegative integers x and z, or -1 if no such y exists.
0, 0, 0, 1, 0, 0, 139, 19, 1, 0, 0, 9, 2, 7, 3, 1, 0, 0, 2, 1, 0, 4, 3, 3, 1, 0, 0, 7, 2, 2, 19, 1, 0, 2, 6, 1, 0, 0, 3, 11, 1, 0, 2, 429, 2, 5, 11, 179, 1, 0, 0, 1, 0, 3, 3, 3, 2, 2, 3, 15, 5, 6, 7, 1, 0, 0, 4, 6337, 8, 16, 3, 5, 2, 2, 2, 31, 6, 2, 11, 1, 0, 0, 0, 17, 1, 0, 11, 5, 18, 1, 0, 621, 2, 2, 3, 3, 1, 0, 2, 1, 0
Offset: 0
Keywords
Examples
a(6) = 139 since 6 = 36^4 - 139^3 + 1003^2. a(67) = 6337 since 67 = 676^4 - 6337^3 + 213662^2. a(176) = 13449 since 176 = 140^4 - 13449^3 + 1559555^2. a(2667) = 661^4 - 15655^3 + 1909401^2. a(11019) = 71383 since 11019 = 4325^4 - 71383^3 + 3719409^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, Checking the conjecture for m = 0..10^5
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] Do[y=0;Label[bb];Do[If[SQ[n+y^3-x^4],Goto[aa]],{x,0,(n+y^3)^(1/4)}];y=y+1;Goto[bb];Label[aa];Print[n," ",y];Continue,{n,0,100}]
Comments