cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266047 Smallest integers of each prime signature of prime factorization palindromes (A265640).

This page as a plain text file.
%I A266047 #32 Jun 21 2019 10:58:49
%S A266047 1,2,4,8,12,16,32,36,48,64,72,128,144,180,192,256,288,432,512,576,720,
%T A266047 768,900,1024,1152,1296,1728,1800,2048,2304,2592,2880,3072,3600,4096,
%U A266047 4608,5184,6300,6480,6912,7200,8192,9216,10368,10800,11520,12288,14400,15552,16384,18432
%N A266047 Smallest integers of each prime signature of prime factorization palindromes (A265640).
%C A266047 A subsequence of A025487.
%C A266047 According to Hardy and Ramanujan, the number Q(x) of numbers
%C A266047 2^b_2*3^b_3*...*p^b_p <= x,       (1)
%C A266047 where b_2>=b_3>=...>=b_p, is of order e^(2Pi/sqrt(3)(1+o(1))sqrt(log x/loglog x)).
%C A266047 If all b_i=2*c_i are even, then the number of such numbers is Q(sqrt(x)). Note that, if in (1) c_p>0, where p is n-th prime, then c_r>0, r<p. Thus 2*3*...*p_n <=  2^c_2* ... p^c_p <= sqrt(x). By the PNT, 2*3*...*p_n=e^(n+o(n)). Then n<=log(x)/2(1+o(log(x))) and for n>=2 [Dusart], Eq(4.2),
%C A266047 p<=e*n*log(n)<e/2*log(x*loglogx). (2)
%C A266047 Let K(x) be the number of a(n)<=x, q=nextprime(p). Then K(x)<=Q(sqrt(x))(1+Sum_{prime p}1/p)+1/3, where p satisfies (2) (+1/3, taking into account 1/q).
%C A266047 By [Rosser], Sum_{p<=x}1/p=loglog(x)+0.261497...+o(1). Hence K(x)<=Q(sqrt(x))*(loglog(e/2*log(x*loglogx))+1.594830...+o(1)).
%C A266047 Asymptotics of K(x) remain open.
%H A266047 Amiram Eldar, <a href="/A266047/b266047.txt">Table of n, a(n) for n = 1..10000</a>
%H A266047 P. Dusart, <a href="http://arxiv.org/abs/1002.0442">Estimates of some functions over primes without R.H.</a>, arXiv:1002.0442 [math.NT], 2010.
%H A266047 G. H. Hardy and S. Ramanujan, <a href="http://www.imsc.res.in/~rao/ramanujan/CamUnivCpapers/Cpaper34/page1.htm">Asymptotic formulas concerning the distribution of integers of various types</a>, Proc. London Math. Soc, Ser. 2, Vol. 16 (1917), pp. 112-132.
%H A266047 J. B. Rosser. <a href="http://dx.doi.org/10.2307/2371291">Explicit bounds for some functions of prime numbers</a>. Amer. J. Math. 63 (1941), 211-232.
%Y A266047 Cf. A025487, A265640, A265641.
%K A266047 nonn
%O A266047 1,2
%A A266047 _Vladimir Shevelev_, Dec 20 2015