This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266047 #32 Jun 21 2019 10:58:49 %S A266047 1,2,4,8,12,16,32,36,48,64,72,128,144,180,192,256,288,432,512,576,720, %T A266047 768,900,1024,1152,1296,1728,1800,2048,2304,2592,2880,3072,3600,4096, %U A266047 4608,5184,6300,6480,6912,7200,8192,9216,10368,10800,11520,12288,14400,15552,16384,18432 %N A266047 Smallest integers of each prime signature of prime factorization palindromes (A265640). %C A266047 A subsequence of A025487. %C A266047 According to Hardy and Ramanujan, the number Q(x) of numbers %C A266047 2^b_2*3^b_3*...*p^b_p <= x, (1) %C A266047 where b_2>=b_3>=...>=b_p, is of order e^(2Pi/sqrt(3)(1+o(1))sqrt(log x/loglog x)). %C A266047 If all b_i=2*c_i are even, then the number of such numbers is Q(sqrt(x)). Note that, if in (1) c_p>0, where p is n-th prime, then c_r>0, r<p. Thus 2*3*...*p_n <= 2^c_2* ... p^c_p <= sqrt(x). By the PNT, 2*3*...*p_n=e^(n+o(n)). Then n<=log(x)/2(1+o(log(x))) and for n>=2 [Dusart], Eq(4.2), %C A266047 p<=e*n*log(n)<e/2*log(x*loglogx). (2) %C A266047 Let K(x) be the number of a(n)<=x, q=nextprime(p). Then K(x)<=Q(sqrt(x))(1+Sum_{prime p}1/p)+1/3, where p satisfies (2) (+1/3, taking into account 1/q). %C A266047 By [Rosser], Sum_{p<=x}1/p=loglog(x)+0.261497...+o(1). Hence K(x)<=Q(sqrt(x))*(loglog(e/2*log(x*loglogx))+1.594830...+o(1)). %C A266047 Asymptotics of K(x) remain open. %H A266047 Amiram Eldar, <a href="/A266047/b266047.txt">Table of n, a(n) for n = 1..10000</a> %H A266047 P. Dusart, <a href="http://arxiv.org/abs/1002.0442">Estimates of some functions over primes without R.H.</a>, arXiv:1002.0442 [math.NT], 2010. %H A266047 G. H. Hardy and S. Ramanujan, <a href="http://www.imsc.res.in/~rao/ramanujan/CamUnivCpapers/Cpaper34/page1.htm">Asymptotic formulas concerning the distribution of integers of various types</a>, Proc. London Math. Soc, Ser. 2, Vol. 16 (1917), pp. 112-132. %H A266047 J. B. Rosser. <a href="http://dx.doi.org/10.2307/2371291">Explicit bounds for some functions of prime numbers</a>. Amer. J. Math. 63 (1941), 211-232. %Y A266047 Cf. A025487, A265640, A265641. %K A266047 nonn %O A266047 1,2 %A A266047 _Vladimir Shevelev_, Dec 20 2015