cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266068 Binary representation of the n-th iteration of the "Rule 3" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 100, 10, 1111001, 100, 11111110011, 1000, 111111111100111, 10000, 1111111111111001111, 100000, 11111111111111110011111, 1000000, 111111111111111111100111111, 10000000, 1111111111111111111111001111111, 100000000, 11111111111111111111111110011111111
Offset: 0

Views

Author

Robert Price, Dec 20 2015

Keywords

Comments

Rule 35 also generates this sequence.

Examples

			From _Michael De Vlieger_, Dec 21 2015: (Start)
First 8 rows, replacing leading zeros with ".", the row converted to its binary equivalent at right:
              1                =               1
            1 0 0              =             100
          . . . 1 0            =              10
        1 1 1 1 0 0 1          =         1111001
      . . . . . . 1 0 0        =             100
    1 1 1 1 1 1 1 0 0 1 1      =     11111110011
  . . . . . . . . . 1 0 0 0    =            1000
1 1 1 1 1 1 1 1 1 1 0 0 1 1 1  = 111111111100111
(End)
		

Crossrefs

Programs

  • Mathematica
    rule = 3; rows = 20; Table[FromDigits[Table[Take[CellularAutomaton[rule,{{1},0}, rows-1, {All,All}][[k]], {rows-k+1, rows+k-1}], {k,1,rows}][[k]]], {k,1,rows}]
  • Python
    print([(10*100**n - 99*10**((n-1)//2) - 1)//9 if n%2 else 10**(n//2) for n in range(30)]) # Karl V. Keller, Jr., Aug 26 2021

Formula

G.f.: (1+100*x-10001*x^2+109901*x^3+10000*x^4-120000*x^5) / ((1-x)*(1+x)*(1-100*x)*(1+100*x)*(1-10*x^2)). - Colin Barker, Dec 21 2015
a(n) = (10*100^n - 99*10^((n-1)/2) - 1)/9 for odd n; a(n) = 10^(n/2) for even n. - Karl V. Keller, Jr., Aug 26 2021