cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266069 Decimal representation of the n-th iteration of the "Rule 3" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 4, 2, 121, 4, 2035, 8, 32743, 16, 524239, 32, 8388511, 64, 134217535, 128, 2147483263, 256, 34359737599, 512, 549755812351, 1024, 8796093019135, 2048, 140737488349183, 4096, 2251799813672959, 8192, 36028797018939391, 16384, 576460752303374335, 32768
Offset: 0

Views

Author

Robert Price, Dec 20 2015

Keywords

Comments

Rule 35 also generates this sequence.

Examples

			From _Michael De Vlieger_, Dec 21 2015: (Start)
First 8 rows, replacing leading zeros with ".", the row converted to its binary, then decimal equivalent at right:
              1                =               1 ->     1
            1 0 0              =             100 ->     4
          . . . 1 0            =              10 ->     2
        1 1 1 1 0 0 1          =         1111001 ->   121
      . . . . . . 1 0 0        =             100 ->     4
    1 1 1 1 1 1 1 0 0 1 1      =     11111110011 ->  2035
  . . . . . . . . . 1 0 0 0    =            1000 ->     8
1 1 1 1 1 1 1 1 1 1 0 0 1 1 1  = 111111111100111 -> 32743
(End)
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Mathematica
    rule = 3; rows = 30; Table[FromDigits[Table[Take[CellularAutomaton[rule,{{1},0}, rows-1, {All,All}][[k]], {rows-k+1, rows+k-1}], {k,1,rows}][[k]],2], {k,1,rows}]
  • Python
    print([2*4**n - 3*2**((n-1)//2) - 1 if n%2 else 2**(n//2) for n in range(30)]) # Karl V. Keller, Jr., Aug 25 2021

Formula

G.f.: (1+4*x-17*x^2+45*x^3+16*x^4-64*x^5) / ((1-x)*(1+x)*(1-4*x)*(1+4*x)*(1-2*x^2)). - Colin Barker, Dec 21 2015 and Apr 18 2019
a(n) = 2*4^n - 3*2^((n-1)/2) - 1 for odd n; a(n) = 2^(n/2) for even n. - Karl V. Keller, Jr., Aug 25 2021