A266071 Binary representation of the middle column of the "Rule 3" elementary cellular automaton starting with a single ON (black) cell.
1, 10, 100, 1001, 10010, 100101, 1001010, 10010101, 100101010, 1001010101, 10010101010, 100101010101, 1001010101010, 10010101010101, 100101010101010, 1001010101010101, 10010101010101010, 100101010101010101, 1001010101010101010, 10010101010101010101
Offset: 0
Examples
From _Michael De Vlieger_, Dec 21 2015: (Start) First 8 rows at left with the center column values in parentheses, and at right the binary value of center column cells up to that row: (1) -> 1 1 (0) 0 -> 10 0 0 (0) 1 0 -> 100 1 1 1 (1) 0 0 1 -> 1001 0 0 0 0 (0) 0 1 0 0 -> 10010 1 1 1 1 1 (1) 1 0 0 1 1 -> 100101 0 0 0 0 0 0 (0) 0 0 1 0 0 0 -> 1001010 1 1 1 1 1 1 1 (1) 1 1 0 0 1 1 1 -> 10010101 (End)
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
Links
- Robert Price, Table of n, a(n) for n = 0..999
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- Index entries for sequences related to cellular automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (10,1,-10).
Programs
-
Mathematica
Table[SeriesCoefficient[(1 - x^2 + x^3)/(1 - 10 x - x^2 + 10 x^3), {x, 0, n}], {n, 0, 19}] (* Michael De Vlieger, Dec 21 2015 *)
-
Python
print([991*10**n//990 for n in range(50)]) # Karl V. Keller, Jr., Oct 09 2021
Formula
G.f.: (1 - x^2 + x^3)/(1 - 10*x - x^2 + 10*x^3). - Michael De Vlieger, Dec 21 2015
a(n) = floor(991*10^n/990). - Karl V. Keller, Jr., Oct 09 2021