A271343
Triangle read by rows: T(n,k) = A196020(n,k) - A266537(n,k), n>=1, k>=1.
Original entry on oeis.org
1, 1, 5, 1, 1, 0, 9, 3, 1, -2, 1, 13, 5, 0, 1, 0, 0, 17, 7, 3, 1, -6, 0, 1, 21, 9, 0, 0, 1, 0, 3, 0, 25, 11, 0, 0, 1, -10, 0, 3, 29, 13, 7, 0, 1, 1, 0, 0, 0, 0, 33, 15, 0, 0, 0, 1, -14, 3, 5, 0, 37, 17, 0, 0, 0, 1, 0, 0, -2, 3, 41, 19, 11, 0, 0, 1, 1, -18, 0, 7, 0, 0, 45, 21, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0
Offset: 1
Triangle begins:
1;
1;
5, 1;
1, 0;
9, 3;
1, -2, 1;
13, 5, 0;
1, 0, 0;
17, 7, 3;
1, -6, 0, 1;
21, 9, 0, 0;
1, 0, 3, 0;
25, 11, 0, 0;
1, -10, 0, 3;
29, 13, 7, 0, 1;
1, 0, 0, 0, 0;
33, 15, 0, 0, 0;
1, -14, 3, 5, 0;
37, 17, 0, 0, 0;
1, 0, 0, -2, 3;
41, 19, 11, 0, 0, 1;
1, -18, 0, 7, 0, 0;
45, 21, 0, 0, 0, 0;
1, 0, 3, 0, 0, 0;
49, 23, 0, 0, 5, 0;
1, -22, 0, 9, 0, 0;
53, 25, 15, 0, 0, 3;
1, 0, 0, -6, 0, 0, 1;
...
For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18 and the sum of odd divisors of 18 is 1 + 3 + 9 = 13. On the other hand, the 18th row of the triangle is 1, -14, 3, 5, 0, so the alternating row sum is 1 -(-14) + 3 - 5 + 0 = 13, equaling the sum of odd divisors of 18.
A266069
Decimal representation of the n-th iteration of the "Rule 3" elementary cellular automaton starting with a single ON (black) cell.
Original entry on oeis.org
1, 4, 2, 121, 4, 2035, 8, 32743, 16, 524239, 32, 8388511, 64, 134217535, 128, 2147483263, 256, 34359737599, 512, 549755812351, 1024, 8796093019135, 2048, 140737488349183, 4096, 2251799813672959, 8192, 36028797018939391, 16384, 576460752303374335, 32768
Offset: 0
From _Michael De Vlieger_, Dec 21 2015: (Start)
First 8 rows, replacing leading zeros with ".", the row converted to its binary, then decimal equivalent at right:
1 = 1 -> 1
1 0 0 = 100 -> 4
. . . 1 0 = 10 -> 2
1 1 1 1 0 0 1 = 1111001 -> 121
. . . . . . 1 0 0 = 100 -> 4
1 1 1 1 1 1 1 0 0 1 1 = 11111110011 -> 2035
. . . . . . . . . 1 0 0 0 = 1000 -> 8
1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 = 111111111100111 -> 32743
(End)
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
-
rule = 3; rows = 30; Table[FromDigits[Table[Take[CellularAutomaton[rule,{{1},0}, rows-1, {All,All}][[k]], {rows-k+1, rows+k-1}], {k,1,rows}][[k]],2], {k,1,rows}]
-
print([2*4**n - 3*2**((n-1)//2) - 1 if n%2 else 2**(n//2) for n in range(30)]) # Karl V. Keller, Jr., Aug 25 2021
Showing 1-2 of 2 results.
Comments