This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266092 #21 Feb 16 2025 08:33:28 %S A266092 6,8,6,0,2,6,7,2,4,5,3,6,2,5,1,3,1,9,7,1,3,0,0,6,8,4,6,1,8,2,2,3,8,1, %T A266092 5,9,5,0,3,3,2,4,2,3,7,7,6,2,3,4,3,4,0,2,4,1,7,6,7,1,9,1,6,7,0,0,4,0, %U A266092 2,9,0,5,8,1,8,7,5,4,8,4,8,7,7,6,4,2,8,1,5,7,8,6,8,9,3,9,8,2,6,3,8,0,6,6,8,6,9,9,3,5,2,8,3,3,2,4,8,9,6,7 %N A266092 Decimal expansion of the power tower of 1/sqrt(3): the real solution to 3^(x/2)*x = 1. %H A266092 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PowerTower.html">Power Tower</a> %H A266092 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html"> Lambert W-Function</a> %F A266092 Equals 2*LambertW(log(3)/2)/log(3). %e A266092 (1/sqrt(3))^(1/sqrt(3))^(1/sqrt(3))^(1/sqrt(3))^… = 0.686026724536251319713006846182… %t A266092 RealDigits[(2 ProductLog[Log[3]/2])/Log[3], 10, 120][[1]] %o A266092 (PARI) t=log(3)/2; lambertw(t)/t \\ _Charles R Greathouse IV_, Apr 18 2016 %Y A266092 Cf. A020760, A030178, A073084, A073243, A231096. %K A266092 nonn,cons %O A266092 0,1 %A A266092 _Ilya Gutkovskiy_, Dec 21 2015