A266096 Number of n X 3 integer arrays with each element equal to the number of horizontal and antidiagonal neighbors exactly one smaller than itself.
4, 13, 64, 230, 1012, 3928, 16428, 65736, 269908, 1091720, 4454304, 18082796, 73622676, 299247292, 1217498296, 4950677020, 20137255328, 81894658192, 333086633092, 1354665687204, 5509630157292, 22408041160240, 91136102570276
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..1....0..0..0....0..0..0....1..0..0....1..0..0....0..0..0....1..0..0 ..1..1..2....1..2..0....1..2..1....0..2..1....1..1..1....0..2..1....0..0..0 ..0..1..1....1..0..0....0..0..0....1..0..1....1..0..0....1..0..0....1..2..1 ..1..0..0....0..0..1....0..0..0....1..1..0....0..0..0....0..0..1....0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A266101.
Formula
Empirical: a(n) = a(n-1) + 12*a(n-2) + 5*a(n-3) - 12*a(n-4) - 2*a(n-5).
Empirical g.f.: x*(4 + 9*x + 3*x^2 - 10*x^3 - 3*x^4) / (1 - x - 12*x^2 - 5*x^3 + 12*x^4 + 2*x^5). - Colin Barker, Jan 09 2019