cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266096 Number of n X 3 integer arrays with each element equal to the number of horizontal and antidiagonal neighbors exactly one smaller than itself.

Original entry on oeis.org

4, 13, 64, 230, 1012, 3928, 16428, 65736, 269908, 1091720, 4454304, 18082796, 73622676, 299247292, 1217498296, 4950677020, 20137255328, 81894658192, 333086633092, 1354665687204, 5509630157292, 22408041160240, 91136102570276
Offset: 1

Views

Author

R. H. Hardin, Dec 21 2015

Keywords

Examples

			Some solutions for n=4:
..0..0..1....0..0..0....0..0..0....1..0..0....1..0..0....0..0..0....1..0..0
..1..1..2....1..2..0....1..2..1....0..2..1....1..1..1....0..2..1....0..0..0
..0..1..1....1..0..0....0..0..0....1..0..1....1..0..0....1..0..0....1..2..1
..1..0..0....0..0..1....0..0..0....1..1..0....0..0..0....0..0..1....0..0..1
		

Crossrefs

Column 3 of A266101.

Formula

Empirical: a(n) = a(n-1) + 12*a(n-2) + 5*a(n-3) - 12*a(n-4) - 2*a(n-5).
Empirical g.f.: x*(4 + 9*x + 3*x^2 - 10*x^3 - 3*x^4) / (1 - x - 12*x^2 - 5*x^3 + 12*x^4 + 2*x^5). - Colin Barker, Jan 09 2019