A266126 Number of n X 3 integer arrays with each element equal to the number of horizontal, diagonal and antidiagonal neighbors exactly one smaller than itself.
4, 25, 77, 385, 2099, 9083, 48188, 249446, 1166325, 6288299, 31791039, 153857132, 834409385, 4178055126, 20594948568, 111887135749, 558869714981, 2784252991713, 15113219048778, 75548474928693, 378923024757908
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..1..1....1..1..0....0..2..0....2..1..0....0..0..0....0..1..1....0..2..1 ..0..0..1....1..0..1....1..0..1....1..1..1....0..2..0....1..0..1....0..0..1 ..0..2..0....2..1..1....1..1..2....2..0..1....1..0..1....1..1..2....0..2..0 ..1..0..0....2..1..0....0..1..2....1..1..0....0..2..0....2..1..0....0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A266131.
Formula
Empirical: a(n) = a(n-1) +2*a(n-2) +205*a(n-3) -120*a(n-4) -258*a(n-5) -10662*a(n-6) -1620*a(n-7) +5336*a(n-8) +88936*a(n-9) +201296*a(n-10) +58144*a(n-11) +86672*a(n-12) -1097792*a(n-13) -831920*a(n-14) -2968704*a(n-15) -782336*a(n-16) -723152*a(n-17) +635968*a(n-18) +3427456*a(n-19) +337216*a(n-20) -204224*a(n-21) -289664*a(n-22) -453120*a(n-23) +20992*a(n-24) -1536*a(n-25) -12288*a(n-26) for n>27.
Comments