This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266138 #5 Dec 21 2015 16:19:42 %S A266138 1,0,0,1,0,2,1,3,2,5,7,7,11,13,24,26,35,44,69,78,112,150,188,245,318, %T A266138 429,537,729,924,1177,1534,1965,2518,3287,4108,5394,6857,8604,11022, %U A266138 14073,17899,22549,28900,36182,45954,58395,72912,92118,116201,146279 %N A266138 Expansion of Product_{k>=1} 1/(1 - k*(x^(2*k+1))). %H A266138 Vaclav Kotesovec, <a href="/A266138/b266138.txt">Table of n, a(n) for n = 0..10000</a> %F A266138 a(n) ~ c * 3^(n/7), where %F A266138 c = 617630.638335... if mod(n,7) = 0 %F A266138 c = 617630.321433... if mod(n,7) = 1 %F A266138 c = 617630.360795... if mod(n,7) = 2 %F A266138 c = 617630.429073... if mod(n,7) = 3 %F A266138 c = 617630.357078... if mod(n,7) = 4 %F A266138 c = 617630.421636... if mod(n,7) = 5 %F A266138 c = 617630.341606... if mod(n,7) = 6. %t A266138 nmax=80; CoefficientList[Series[Product[1/(1-k*(x^(2*k+1))), {k, 1, nmax}], {x, 0, nmax}], x] %Y A266138 Cf. A006906, A077335, A087897, A265951, A266137. %K A266138 nonn %O A266138 0,6 %A A266138 _Vaclav Kotesovec_, Dec 21 2015