A266147 Number of n-digit primes in which n-1 of the digits are 8's.
4, 2, 3, 1, 1, 1, 0, 1, 2, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
a(3) = 3 since 881, 883, and 887 are all primes.
Links
- Michael De Vlieger and Robert G. Wilson v, Table of n, a(n) for n = 1..1500
Crossrefs
Programs
-
Mathematica
d = 8; Array[Length@ Select[d (10^# - 1)/9 + (Range[0, 9] - d), PrimeQ] &, 100] Join[{4},Table[Count[Table[10FromDigits[PadRight[{},k,8]]+n,{n,{1,3,7,9}}], ?PrimeQ],{k,110}]] (* _Harvey P. Dale, Jun 22 2021 *)
-
Python
from _future_ import division from sympy import isprime def A266147(n): return 4 if n==1 else sum(1 for d in [-7,-5,-1,1] if isprime(8*(10**n-1)//9+d)) # Chai Wah Wu, Dec 27 2015
Comments