A266149 Number of n-digit primes that consist of at least n-1 copies of some decimal digit.
4, 21, 46, 43, 40, 53, 35, 49, 40, 38, 44, 52, 35, 45, 49, 42, 38, 57, 28, 45, 38, 47, 38, 52, 33, 45, 56, 38, 36, 65, 29, 56, 48, 40, 38, 58, 37, 33, 57, 40, 37, 61, 41, 39, 37, 44, 36, 55, 47, 43, 47, 43, 35, 62, 43, 46, 29, 35, 37, 56, 39, 41, 46, 48, 39, 74, 45, 34, 34, 35, 34, 67, 39, 45, 43
Offset: 1
Examples
a(1) = 4 since 2, 3, 5 and 7 are primes, a(2) = 21 since 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 and 97 are primes, a(3) = 46 since 101, 113, 131, 151, 181, 191, 199, 211, 223, 227, 229, 233, 277, 311, 313, 331, 337, 353, 373, 383, 433, 443, 449, 499, 557, 577, 599, 661, 677, 727, 733, 757, 773, 787, 797, 811, 877, 881, 883, 887, 911, 919, 929, 977, 991, 997 are all primes, a(4) = 43 since 1117, 1151, 1171, 1181, 1511, 1777, 1811, 1999, 2111, 2221, 2333, 2777, 2999, 3313, 3323, 3331, 3343, 3373, 3433, 3533, 3733, 3833, 4111, 4441, 4447, 4999, 5333, 5557, 6661, 7177, 7333, 7477, 7577, 7717, 7727, 7757, 7877, 8111, 8887, 8999, 9199, 9929 and 9949 are primes; etc.
Links
- Michael De Vlieger and Robert G. Wilson v, Table of n, a(n) for n = 1..1215
Programs
-
Mathematica
Length /@ Array[Function[n, Select[Union[Flatten[Function[k, Select[FromDigits /@ Flatten[Permutations[Flatten@ {Table[k, {n - 1}], #}] & /@ Range[0, 9], 1], PrimeQ]] /@ Range[1, 9]]], Function[m, IntegerLength@ m == n]]], 100] (* Michael De Vlieger, Jan 01 2016 *)
-
Python
from sympy import isprime def a(n): if n == 1: return 4 okset = set() for digit1 in "24568": for digit2 in "1379": t = int(digit1*(n-1) + digit2) if isprime(t): okset.add(t) for digit1 in "1379": for digit2 in "0123456789": if ((n-1)*int(digit1) + int(digit2))%3 == 0: continue for j in range(n): mc = digit1*j + digit2 + digit1*(n-1-j) if mc[0] == '0': continue t = int(mc) if isprime(t): okset.add(t) return len(okset) print([a(n) for n in range(1, 76)]) # Michael S. Branicky, Apr 21 2021
Comments