cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266153 Least positive integer y such that -n = x^4 - y^3 + z^2 for some positive integers x and z, or 0 if no such y exists.

Original entry on oeis.org

3, 3, 2, 6, 13, 2, 3, 5, 5, 3, 28, 4, 15, 4, 10, 33, 3, 7, 5, 238, 31, 3, 4, 5, 3, 11, 4, 5, 21, 11, 6, 4, 17, 11, 5, 98, 7, 4, 4, 5, 147, 19, 5, 4, 5, 6, 4, 29, 75, 1011, 7, 9, 7, 4, 8, 6, 59, 47, 4, 5, 71, 4, 17, 45, 13, 7, 18, 9, 175, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 22 2015

Keywords

Comments

The conjecture in A266152 implies that a(n) > 0 for all n > 0.
It seems that a(n) < n*(n+4)/2 for all n > 1.

Examples

			a(1) = 3 since -1 = 1^4 - 3^3 + 5^2.
a(2) = 3 since -2 = 2^4 - 3^3 + 3^2.
a(11) = 28 since -11 = 5^4 - 28^3 + 146^2.
a(20) = 238 since -20 = 32^4 - 238^3 + 3526^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=n>0&&IntegerQ[Sqrt[n]]
    Do[y=Floor[n^(1/3)]+1;Label[bb];Do[If[SQ[-n+y^3-x^4],Print[n," ",y];Goto[aa]],{x,1,(-n+y^3)^(1/4)}];y=y+1;Goto[bb];Label[aa];Continue,{n,1,70}]