This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A266193 #21 Mar 14 2021 17:09:07 %S A266193 0,0,1,1,1,1,2,2,3,3,3,3,4,4,5,5,5,5,4,4,5,5,5,5,6,6,7,7,7,7,8,8,9,9, %T A266193 9,9,10,10,11,11,11,11,10,10,11,11,11,11,12,12,13,13,13,13,14,14,15, %U A266193 15,15,15,16,16,17,17,17,17,16,16,17,17,17,17,18,18,19,19,19,19,20,20,21,21,21,21,22,22,23,23,23,23,22 %N A266193 Decrement by 1 all maximal digits in factorial base representation of n and then shift it one digit right. %C A266193 By "maximal digits" are here understood any digit k that occurs in position k, digit-positions numbered from the right and starting from 1. For example in A007623(677) = "53021", the digits "5" and "1" are maximal, because no larger digits will fit into those positions in a well-formed factorial base representation of a natural number. %H A266193 Antti Karttunen, <a href="/A266193/b266193.txt">Table of n, a(n) for n = 0..10080</a> %H A266193 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a> %F A266193 Other identities. For all n >= 0: %F A266193 a(A153880(n)) = n. %e A266193 n A007623(n) [subtract 1 from max.digits a(n) %e A266193 [in factorial then shift one digit right] [reinterpret %e A266193 base] in decimal] %e A266193 0 0 -> 0 = 0 %e A266193 1 1 -> 0 = 0 %e A266193 2 10 -> 1 = 1 %e A266193 3 11 -> 1 = 1 %e A266193 4 20 -> 1 = 1 %e A266193 5 21 -> 1 = 1 %e A266193 6 100 -> 10 = 2 %e A266193 7 101 -> 10 = 2 %e A266193 8 110 -> 11 = 3 %e A266193 9 111 -> 11 = 3 %e A266193 10 120 -> 11 = 3 %e A266193 11 121 -> 11 = 3 %e A266193 12 200 -> 20 = 4 %e A266193 13 201 -> 20 = 4 %e A266193 14 210 -> 21 = 5 %e A266193 15 211 -> 21 = 5 %e A266193 16 220 -> 21 = 5 %e A266193 17 221 -> 21 = 5 %e A266193 18 300 -> 20 = 4 %e A266193 ... %e A266193 23 321 -> 21 = 5 %e A266193 119 4321 -> 321 = 23 %o A266193 (MIT/GNU Scheme) %o A266193 (define (A266193 n) (let loop ((n n) (z 0) (i 2) (f 0)) (cond ((zero? n) z) (else (let ((d (remainder n i))) (loop (quotient n i) (+ z (* f (- d (if (< d (- i 1)) 0 1)))) (+ 1 i) (if (zero? f) 1 (* f (- i 1))))))))) %o A266193 (Python) %o A266193 from sympy import factorial as f %o A266193 def a007623(n, p=2): return n if n<p else a007623(n//p, p+1)*10 + n%p %o A266193 def a(n): %o A266193 x=str(a007623(n))[::-1] %o A266193 y="".join(str(i) if i + 1==int(x[i]) else x[i] for i in range(len(x)))[1:] %o A266193 return 0 if n==0 else sum(int(y[i])*f(i + 1) for i in range(len(y))) %o A266193 print([a(n) for n in range(101)]) # _Indranil Ghosh_, Jun 24 2017 %Y A266193 Cf. A007623, A257684, A266123. %Y A266193 Left inverse of A153880. %K A266193 nonn,base %O A266193 0,7 %A A266193 _Antti Karttunen_, Dec 23 2015