A266277 Least positive integer x such that n + x^2 = y^3 + z^5 for some positive integers y and z, or 0 if no such x exists.
3, 1, 83, 5, 6, 2, 175, 19, 1, 191, 7, 31, 4, 12, 16, 5, 7, 4, 17, 3, 18, 14, 1099, 6, 2, 244, 10, 1, 501, 2, 15205, 3, 1, 88, 5, 44, 2, 60, 2537, 1, 5, 52, 32834, 4, 18, 9, 84, 7, 13, 4, 3, 16, 14, 39, 26, 2, 3, 10, 1, 20, 6, 2, 8, 543, 1, 111, 4570, 36, 110, 1402, 501
Offset: 0
Keywords
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..2315
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34 (2017), no.2, 97-120. (Cf. Section 5.)
Crossrefs
Programs
-
Maple
a(0) = 3 since 0 + 3^2 = 2^3 + 1^5. a(2) = 83 since 2 + 83^2 = 19^3 + 2^5. a(42) = 32834 since 42 + 32834^2 = 781^3 + 57^5. a(445) = 903402 since 445 + 903402^2 = 9345^3 + 34^5. a(510) = 10875037 since 510 + 10875037^2 = 40712^3 + 551^5.
-
Mathematica
CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)] Do[x=1;Label[bb];Do[If[CQ[n+x^2-y^5],Print[n," ",x];Goto[aa]],{y,1,(n+x^2-1)^(1/5)}];x=x+1;Goto[bb];Label[aa];Continue,{n,0,70}]
Comments