A266217 Binary representation of the n-th iteration of the "Rule 7" elementary cellular automaton starting with a single ON (black) cell.
1, 110, 0, 1111111, 0, 11111111111, 0, 111111111111111, 0, 1111111111111111111, 0, 11111111111111111111111, 0, 111111111111111111111111111, 0, 1111111111111111111111111111111, 0, 11111111111111111111111111111111111, 0, 111111111111111111111111111111111111111
Offset: 0
Links
- Robert Price, Table of n, a(n) for n = 0..499
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
- Index entries for sequences related to cellular automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (0,10001,0,-10000).
Programs
-
Mathematica
rule=7; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]]],{k,1,rows}] (* Binary Representation of Rows *)
-
Python
print([(10*100**n - 1)//9*(n%2) + 0**n - 0**abs(n-1) for n in range(50)]) # Karl V. Keller, Jr., Aug 26 2021
Formula
From Colin Barker, Dec 25 2015 and Apr 13 2019: (Start)
a(n) = 10001*a(n-2) - 10000*a(n-4) for n>5.
G.f.: (1 + 110*x - 10001*x^2 + 11001*x^3 + 10000*x^4 - 10000*x^5) / ((1-x)*(1+x)*(1-100*x)*(1+100*x)).
(End)
a(n) = ((10*100^n - 1)/9)*(n mod 2) + 0^n - 0^abs(n-1). - Karl V. Keller, Jr., Aug 26 2021