A266218 Decimal representation of the n-th iteration of the "Rule 7" elementary cellular automaton starting with a single ON (black) cell.
1, 6, 0, 127, 0, 2047, 0, 32767, 0, 524287, 0, 8388607, 0, 134217727, 0, 2147483647, 0, 34359738367, 0, 549755813887, 0, 8796093022207, 0, 140737488355327, 0, 2251799813685247, 0, 36028797018963967, 0, 576460752303423487, 0, 9223372036854775807, 0
Offset: 0
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
Links
- Robert Price, Table of n, a(n) for n = 0..499
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- Index entries for sequences related to cellular automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (0,17,0,-16).
Programs
-
Mathematica
rule=7; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}] (* Decimal Representation of Rows *)
-
Python
print([(2*4**n-1)*(n%2) + 0**n - 0**abs(n-1) for n in range(33)]) # Karl V. Keller, Jr., Aug 17 2021
Formula
From Colin Barker, Dec 25 2015 and Apr 13 2019: (Start)
a(n) = 17*a(n-2) - 16*a(n-4) for n>5.
G.f.: (1+6*x-17*x^2+25*x^3+16*x^4-16*x^5) / ((1-x)*(1+x)*(1-4*x)*(1+4*x)).
(End)
a(n) = (2*4^n - 1)*(n mod 2) + 0^n - 0^abs(n-1). - Karl V. Keller, Jr., Aug 17 2021