cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266219 Binary representation of the middle column of the "Rule 7" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 11, 110, 1101, 11010, 110101, 1101010, 11010101, 110101010, 1101010101, 11010101010, 110101010101, 1101010101010, 11010101010101, 110101010101010, 1101010101010101, 11010101010101010, 110101010101010101, 1101010101010101010, 11010101010101010101
Offset: 0

Views

Author

Robert Price, Dec 24 2015

Keywords

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Mathematica
    rule=7; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]],{k,1,rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc,k]],{k,1,rows}]  (* Binary Representation of Middle Column *)

Formula

Conjectures from Colin Barker, Dec 25 2015 and Apr 13 2019: (Start)
a(n) = 1/198*(-9*(-1)^n+109*2^(n+1)*5^n-11).
a(n) = 10*a(n-1) + a(n-2) - 10*a(n-3) for n>2.
G.f.: (1+x-x^2) / ((1-x)*(1+x)*(1-10*x)).
(End)
Conjecture: a(n) = floor(109*10^n/99). - Karl V. Keller, Jr., Mar 16 2022