A266219 Binary representation of the middle column of the "Rule 7" elementary cellular automaton starting with a single ON (black) cell.
1, 11, 110, 1101, 11010, 110101, 1101010, 11010101, 110101010, 1101010101, 11010101010, 110101010101, 1101010101010, 11010101010101, 110101010101010, 1101010101010101, 11010101010101010, 110101010101010101, 1101010101010101010, 11010101010101010101
Offset: 0
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
Links
- Robert Price, Table of n, a(n) for n = 0..499
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- Index entries for sequences related to cellular automata
- Index to Elementary Cellular Automata
Programs
-
Mathematica
rule=7; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]],{k,1,rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc,k]],{k,1,rows}] (* Binary Representation of Middle Column *)
Formula
Conjectures from Colin Barker, Dec 25 2015 and Apr 13 2019: (Start)
a(n) = 1/198*(-9*(-1)^n+109*2^(n+1)*5^n-11).
a(n) = 10*a(n-1) + a(n-2) - 10*a(n-3) for n>2.
G.f.: (1+x-x^2) / ((1-x)*(1+x)*(1-10*x)).
(End)
Conjecture: a(n) = floor(109*10^n/99). - Karl V. Keller, Jr., Mar 16 2022