cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266223 Total number of OFF (white) cells after n iterations of the "Rule 7" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

0, 1, 6, 6, 15, 15, 28, 28, 45, 45, 66, 66, 91, 91, 120, 120, 153, 153, 190, 190, 231, 231, 276, 276, 325, 325, 378, 378, 435, 435, 496, 496, 561, 561, 630, 630, 703, 703, 780, 780, 861, 861, 946, 946, 1035, 1035, 1128, 1128, 1225, 1225, 1326, 1326, 1431
Offset: 0

Views

Author

Robert Price, Dec 24 2015

Keywords

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A266216.

Programs

  • Mathematica
    rule=7; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]],{k,1,rows}]; (* Number of Black cells in stage n *) nwc=Table[Length[catri[[k]]]-nbc[[k]],{k,1,rows}]; (* Number of White cells in stage n *) Table[Total[Take[nwc,k]],{k,1,rows}] (* Number of White cells through stage n *)

Formula

Conjectures from Colin Barker, Dec 26 2015 and Apr 14 2019: (Start)
a(n) = 1/2*(n+1)*(n+(-1)^n+1) for n>0.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>5.
G.f.: x*(1+5*x-2*x^2-x^3+x^4) / ((1-x)^3*(1+x)^2).
(End)

Extensions

Conjectures from Colin Barker, Apr 14 2019