cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A375272 The number of factors of n of the form p^Fibonacci(k), where p is a prime and k >= 2, when the factorization is uniquely done using the dual Zeckendorf representation of the exponents in the prime factorization of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 2, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 3, 2, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Aug 09 2024

Keywords

Comments

First differs from A086435 at n = 36. Differs from A266226 at n = 1, 36, ... .
The number of dual-Zeckendorf-infinitary divisors of n (defined in A331109) that are prime powers (A246655).
a(n) depends only on the prime signature of n.
Analogous to A064547 (binary representation) and A318464 (Zeckendorf representation).

Examples

			For n = 8 = 2^3, the dual Zeckendorf representation of 3 is 11, i.e., 3 = Fibonacci(2) + Fibonacci(3) = 1 + 2. Therefore 8 = 2^(1+2) = 2^1 * 2^2, and a(8) = 2.
For n = 256 = 2^8, the dual Zeckendorf representation of 8 is 1011, i.e., 8 = Fibonacci(2) + Fibonacci(3) + Fibonacci(5) = 1 + 2 + 5. Therefore 256 = 2^(1+2+5) = 2^1 * 2^2 * 2^5, and a(256) = 3.
		

Crossrefs

Programs

  • Mathematica
    toDualZeck[n_] := Module[{s = 0, v = 0, i = 0, f}, While[s < n, s += Fibonacci[i + 2]; v += 2^i; i++]; i--; While[i >= 0, f = Fibonacci[i + 2]; If[s - f >= n, s -= f; v -= 2^i]; i--]; v]; (* A003754, after Rémy Sigrist's PARI code in A112309 *)
    f[p_, e_] := DigitCount[toDualZeck[e], 2, 1]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    todualzeck(n) = {my (s=0, v=0); for (i=0, oo, if (s>=n, forstep (j=i-1, 0, -1, if (s-fibonacci(2+j)>=n, s-=fibonacci(2+j); v-=2^j;);); return (v);); s+=fibonacci(2+i); v+=2^i;);} \\ A003754, Rémy Sigrist's code in A112309
    a(n) = vecsum(apply(x -> hammingweight(todualzeck(x)), factor(n)[, 2]));

Formula

Additive with a(p^e) = A112310(e).
a(n) = log_2(A331109(n)).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761), C = Sum_{k>=2} (A112310(k)-A112310(k-1)) * P(k) = 0.18790467121403662496..., and P(s) is the prime zeta function.
Showing 1-1 of 1 results.