cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266230 Least positive integer x such that n + x^2 = y^3 + z^3 for some positive integers y and z, or 0 if no such x exists.

Original entry on oeis.org

3, 1, 3703, 5, 43, 2, 119, 3, 1, 19, 5, 384, 2, 29, 29, 1, 7, 18, 6, 3, 13, 14, 869, 7, 2, 15, 3, 1, 10, 5, 23, 2, 20, 10, 1, 45, 6, 2373, 4, 1193, 5, 52, 7, 36, 54, 3, 18, 5, 13, 4, 2, 385, 9, 1, 14, 6, 3, 76, 250, 250, 34, 2, 8, 3, 1, 336, 5, 52, 2, 8, 28, 1, 21, 12, 13, 4, 113
Offset: 0

Views

Author

Zhi-Wei Sun, Dec 24 2015

Keywords

Comments

Conjecture: For any integer m, there are positive integers x, y and z such that m + x^2 = y^3 + z^3.
This is similar to the conjecture in A266152. We have verified it for all integers m with |m| <= 25000.
Obviously, a(k^3) = 1 for any positive integer k.
See also A266231 for a related sequence.

Examples

			a(0) = 3 since 0 + 3^2 = 1^3 + 2^3.
a(2) = 3703 since 2 + 3703^2 = 107^3 + 232^3.
a(3) = 5 since 3 + 5^2 = 1^3 + 3^3.
a(4) = 43 since 4 + 43^2 = 5^3 + 12^3.
a(37) = 2373 since 37 + 2373^2 = 93^3 + 169^3.
a(1227) = 132316 since 1227 + 132316^2 = 1874^3 + 2219^3.
		

Crossrefs

Programs

  • Mathematica
    CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)]
    Do[x=1;Label[bb];Do[If[CQ[n+x^2-y^3],Print[n," ",x];Goto[aa]],{y,1,((n+x^2)/2)^(1/3)}];x=x+1;Goto[bb];Label[aa];Continue,{n,0,80}]