cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266232 Binomial transform of the number of partitions into distinct parts (A000009).

This page as a plain text file.
%I A266232 #23 Nov 02 2023 07:00:08
%S A266232 1,2,4,9,21,49,114,265,615,1422,3272,7493,17090,38850,88065,199097,
%T A266232 448953,1009788,2265642,5071611,11328395,25254093,56195143,124829822,
%U A266232 276839061,612991848,1355268779,2992016128,6596222234,14522634554,31933047707,70130243427
%N A266232 Binomial transform of the number of partitions into distinct parts (A000009).
%C A266232 Let 0 < p < 1, r > 0, v > 0, f(n) = v*exp(r*n^p)/n^b, then
%C A266232 Sum_{k=0..n} binomial(n,k) * f(k) ~ f(n/2) * 2^n * exp(g(n)), where
%C A266232 g(n) = p^2 * r^2 * n^p / (2^(1+2*p)*n^(1-p) + p*r*(1-p)*2^(1+p)).
%C A266232 Special cases:
%C A266232 p < 1/2, g(n) = 0
%C A266232 p = 1/2, g(n) = r^2/16
%C A266232 p = 2/3, g(n) = r^2 * n^(1/3) / (9 * 2^(1/3)) - r^3/81
%C A266232 p = 3/4, g(n) = 9*r^2*sqrt(n)/(64*sqrt(2)) - 27*r^3*n^(1/4)/(2048*2^(1/4)) + 81*r^4/65536
%C A266232 p = 3/5, g(n) = 9*r^2*n^(1/5)/(100*2^(1/5))
%C A266232 p = 4/5, g(n) = 2^(7/5)*r^2*n^(3/5)/25 - 4*2^(3/5)*r^3*n^(2/5)/625 + 8*2^(4/5)*r^4*n^(1/5)/15625 - 32*r^5/390625
%H A266232 Vaclav Kotesovec, <a href="/A266232/b266232.txt">Table of n, a(n) for n = 0..3200</a>
%F A266232 a(n) ~ 2^(n-5/4) * exp(Pi*sqrt(n/6) + Pi^2/48) / (3^(1/4)*n^(3/4)).
%F A266232 G.f.: (1/(1 - x))*Product_{k>=1} (1 + x^k/(1 - x)^k). - _Ilya Gutkovskiy_, Aug 19 2018
%t A266232 Table[Sum[Binomial[n, k]*PartitionsQ[k], {k, 0, n}], {n, 0, 50}]
%t A266232 nmax = 30; CoefficientList[Series[Sum[PartitionsQ[k] * x^k / (1-x)^(k+1), {k, 0, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jul 31 2022 *)
%Y A266232 Cf. A000009, A294467, A293467, A294468.
%Y A266232 Cf. A218481, A294466, A281425, A095051, A294500.
%K A266232 nonn
%O A266232 0,2
%A A266232 _Vaclav Kotesovec_, Dec 25 2015